

The effect of horizontal resolution on simulation of very extreme precipitation events in a global atmosphere model.

Michael Wehner

Lawrence Berkeley National Laboratory mfwehner@lbl.gov

2010 International Workshop of the TCCIP Project on Climate Change

Summary of my talk

- Extreme precipitation
- Continental US
- Asia
- Discussion

(Lots of pictures, a few equations)

Model resolution and extreme precipitation

- Typical CMIP3 models are too coarse to simulate rare intense storms.
- fvCAM
- NCAR Community Atmospheric Model version 3.1

 Finite Volume hydrostatic dynamics (Lin-Rood)
 Parameterized physics is the same as the spectral version
- Approximate resolution at the equator
 - -"B" 200km
 - -"C" 100km
 - –"D" 50km

GEV cumulative distribution function

$$F(x) = \begin{cases} e^{-[1-k(x-\xi)/\alpha]^{1/k}} & k \neq 0\\ e^{-e^{-(x-\xi)/\alpha}} & k = 0 \end{cases}$$

- $\xi = \text{location}$
- $\alpha = \text{scale}$

$$k = \text{shape}$$

- GEV theory is well suited for "block maxima"
 - -Annual or seasonal maximum of daily averages
- Simple three parameter distribution
 - -In limit that the shape coefficient (*k*) becomes zero, the GEV distribution becomes the Gumbel distribution.
 - -For climate statistics, as in many natural systems, the shape factor is usually positive. This distribution is often referred to as the Weibull distribution and is bounded.
- In this analysis, all coefficients are considered stationary.
 - -Time dependence may actually be important for extreme precipitation.

GEV Return Value

- The return value of a random variable, X_T is that value which is exceeded, on average, once in a period of time, T
- For the generalized extreme value distribution: $X_{T} = \begin{cases} \xi + \alpha [1 - \{-\ln(1 - 1/T)\}^{k} / k & k \neq 0 \\ \\ \xi - \alpha \ln(-\ln(1 - 1/T)) & k = 0 \end{cases}$

Model resolution and extreme precipitation

BERKELEY

20 year return value of annual maximum daily total precipitation

Uncertainty in annual precipitation 20 year RV

Seasonal cycle

- Arguably, the seasonal maxima are more relevant than annual maxima
 - -Winter storms have different causes than summer storms
 - -Impacts vary greatly seasonally. (Snow?)
- The seasonal cycle of extremes appears to be difficult for some models.
- fvCAM2.2 (global)
- NARCCAP (a regional multi-model experiment)

Observed seasonal RV

fvCAM2.2

CRCM

RCM3

WRFP

WRFG

MM5I

HRM3

ECPC

DJF % change RCM3

rrrrr

APHRODITE Observations

JJA

SON

0 0.6 3 6 15 30 60 120 0.3 1.5 4.5 9 22.5 45 90

fvCAM2.2 0.5° X 0.625°

m

fvCAM2.2 2° X 2.5°

APHRODITE Observations

rrrr

fvCAM2.2 0.5° X 0.625°

MAM

90

0

1.5

4.5

fvCAM2.2 2° X 2.5°

T

15

LAWRENGE BERNELLET MAIIZINAL SLADURATUR

APHRODITE Observations

0.3 1.5 4.5 9 22.5 45 90

fvCAM2.2 0.5° X 0.625°

- Uncertainty from different models is relatively large.
 - Internal variability causes more uncertainty than the statistical models. Multi-model uncertainty is almost certainly very large.
- Resolution is important for simulating precipitation extremes especially where orography matters.
 - -but is not everything!
 - -Computing advances are helping.
 - -Large biases in some NARCCAP experiments
 - -Seasonal cycle is not well replicated in most
- Validation and observations?

-Sparse obs?

- What is the best way to grid precipitation station data? –May not be the same for mean vs. extremes?
- Consider NOAA and APHRODITE data sets, both from 0.25° daily datasets.

