

Strengthening Water Supply System Adaptive Capacity

Prof. Ching-pin Tung (童慶斌), Postdoc. T. M. Liu (劉子明) Bioenvironmental Systems Engineering National Taiwan University

> **Prof. Pao-shan YU (游保杉)** Hydraulic and Ocean Engineering National Cheng Kung University

Prof. Ming-hsu Li (李明旭) Institute of Hydrological and Oceanic Sciences National Central University

Contents

- Recent Climate-Induced Disasters
- Future Possible Climate Change Impacts
 - Water Supply Carrying Capacity of the GaoPing Watershed
- Strengthening the Adaptive Capacity of Water Supply Systems
- Final Remarks

Recent Climate-Induced Disasters

More Frequent and Intensive Extreme Events!

Flooding in Taipei Sept. 17, 2001 Return Period of Rainfall more than 150 years

Drought in Taipei Area Spring, 2002

Shihmen Reservoir

Typhoon Morakot August 7-8, 2009

Typhoon Morakot

- The Typhoon Morako intruded Taiwan during 7th to 8th in 2009 and brought about 2,700 mm total rainfall.
 - The annual rainfall in Taiwan is about 2,550mm.

Shiao Lin village, Taiwan, drastic changes after typhoon Morakot.

http://img200.imageshack.us/img200/961/shiaolinaftermorakot.jpg

ChiaXian Weir 甲仙攔河堰

(2009/8/18, ten days after typhoon)

/ater Intake is blocked floodwood Flood run overtopping veir, resulting floodgate malfunction. 2009/08/18

Zengwen Reservoir

Before 2009/8/8

- Zengwen Reservoir
 - the most important reservoir in southern Taiwan
 - Watershed is 481 km²
 - Annual rainfall is 2,897mm
 - Effective storage is 590 million tons. 8

Change of reservoir storage

Capacity: 570 million m³ Deposit: 90 million m³

Capacity: 150 million m³ Deposit: 17 million m³

Typhoon Morakot Significantly Reduce Reservoir Effective Capacity

Learn From Typhoon Morakot

- Water shortage may not only be caused by insufficient streamflows, but also be induced by flood which results in high turbidity flows and facility malfunction.
- Extreme events may come frequently. Extreme flood follows serious drought, and then possible have another serious drought threat.
- Reservoir may be seriously reduced his capacity by a single event. A water supply system will become more and more vulnerable, if extreme events keep hitting the system before it can recover.
 - Decreasing valuerability and increasing resilience of a water supply system is urgent.

Future Possible Climate Change Impacts

Impact Assessment

Correlation between Observation and GCMs' Baseline

Monthly Mean Temperature

	CSMK3	GFDL2.0	GFDL2.1	HadCM3	INM	IPCM4	MIMR	ECHAM5	CGCM2.3.2	NCAR
台南	0.99	0.99	0.99	0.98	1.00	0.99	1.00	0.98	0.97	1.00
阿里山	0.99	1.00	0.99	0.98	1.00	0.98	0.99	0.98	0.97	1.00
高雄	0.99	0.99	0.99	0.98	1.00	0.99	0.99	0.98	0.97	1.00

Monthly Mean Rainfall

	CSMK3	GFDL2.0	GFDL2.1	HadCM3	INM	IPCM4	MIMR	ECHAM5	CGCM2.3.2	NCAR
曾文新村	0.59	0.92	0.92	0.53	0.96	0.45	-0.13	0.97	0.82	0.93
西阿里關	0.58	0.93	0.91	0.54	0.97	0.44	-0.12	0.97	0.82	0.92
旗山(4)	0.58	0.93	0.91	0.53	0.97	0.45	-0.11	0.97	0.81	0.91
甲仙(2)	0.58	0.94	0.91	0.55	0.97	0.43	-0.11	0.97	0.81	0.91
美濃(2)	0.58	0.94	0.91	0.56	0.96	0.42	-0.10	0.97	0.82	0.92
三地門	0.59	0.95	0.92	0.61	0.95	0.40	-0.07	0.98	0.79	0.91
六龜(4)	0.56	0.94	0.91	0.55	0.97	0.45	-0.11	0.98	0.82	0.91
梅山(2)	0.44	0.93	0.83	0.54	0.94	0.34	-0.18	0.93	0.86	0.91

Downscaling Method

- Simple Downscaling
 - Delta Method
 - Bias Correlation

Simulation Models

- Weather Generation Model produce daily weather data based on different climate scenarios.
- Hydrological Models HBV and GWLF simulate current and future streamflows.
- Water Supply System Dynamics Model It is developed by Vensim System Dynamics Modelling tool.

HBV Model

Parameters

- *FC*(Field Capacity)
- $-\beta \land LP$ (Parameter)
- UZL(Outflow height)
- Recession Coefficient
 - K_0 (UZL)
 - K_1 (upper tank)
 - K_2 (lower tank)
- *Ce* (coefficient of ET) *PERC* (Percolation)

Streamflow component of the GWLF model

Water Supply System - Gaoping Area

21

Water Supply System Dynamics Model - the Gaoping System

22

Water Supply System Dynamics Model - the Zengwen Creek system

Verification of System Dynamics Models - Flows @ Liling Bridge Gage Station

Verification of System Dynamics Models - Storage @ Zengwen Reservoir

Index to evaluate the risk of water deficit

Shortage Index

$$SI = \frac{100}{N} \mathop{\text{a}}\limits_{i=1}^{N} \left(\frac{D_i}{S_i}\right)^2$$

Deficit Percent Day Index, DPD Index

$$DPD = \mathop{\bigotimes}_{d=1}^{N_d} D\%$$

The Criteria of Water Deficit

- Current shortage index (SI) is about 0.39 which is used as a reference.
- This study uses the threshold of DPD=1500 %-day to evaluate the water supply ability.

Current Water Supply Carrying Capacity

Risk of Water Deficit with the criterion of DPD>1500%-day

Current Carrying Capacity of Water Supply System

Project Future Water Demand due to growth of Industry and Population

	2011	2016	2021	2026	2031
Demand	201.6	210.5	218.7	222.9	225
SI	0.71	0.87	0.95	1.00	1.03
					Unit: 10 ⁴ CMD

Risk of Water Deficit (DPD>1500%-day)

Climate Change Impacts on Gaopin Water Supply Carrying Capacity@2031

	SI=1	SI=0.5	SI=0.1
W/O Climate Change	231.5	190.6	143.5
GFDL2.1_a1b	175.9	146.7	114.5
INM_a1b	193.9	158.2	122.7
ECHAM5_a1b	195.3	159.3	122.4
CGCM2.3.2_a1b	180.5	150.9	121.2
NCAR_a1b	221.5	177.9	131.5
GFDL2.1_a2	185.5	153.9	119.9
INM_a2	193.6	157.6	122.3
ECHAM5_a2	168.4	140.8	112.2
CGCM2.3.2_a2	169.5	142.0	113.8
NCAR_a2	219.9	177.3	131.5
GFDL2.1_b1	157.3	132.9	103.7
INM_b1	268.8	218.4	149.1
ECHAM5_b1	264.1	213.0	149.6
CGCM2.3.2_b1	187.0	153.8	121.9
NCAR_b1	213.0	171.5	129.6

Climate Change Impacts on Gaoping Water Supply Carrying Capacity

Climate Change Impacts on Gaopin Water Supply Carrying Capacity@2031

35

Climate Change Impacts on Gaopin Water Supply Carrying Capacity@2031

36

Strengthening the Adaptive Capacity of Water Supply Systems

WhitahtepPetoisfingn@yable?

Goals

Identifying hotspot (the most vulnerable areas)
Developing distributed response systems

Establishing Vulnerable Maps

Vulnerability Assessment

Impacts

- Changing Climate
- Adaptive capacity
 - Facilities
 - Governance & Management
- Sensitivity (Exposure)
 - Population
 - Agricultural and Industrial Productions

Vulnerability Map

Taiwan Water Resources Assessment Program to Climate Change (TaiWAP)

http://groups.google.com.tw/group/taiwap2

Components in TaiWAP

Final Remarks

- Sustainable development is our goal. The abilities to evaluate climate change impacts and identify measures to strengthen adaptive capacity are very important to reach the goal.
- Engineer always designs their systems based on past statistics and assumes they are stationary. However, climate change makes different stories.
- How to reduce vulnerability and increase resilience for a system is very important.

Final Remarks

- How can we make wise decisions with uncertainty?Uncertainty is the major constraint on taking actions. Early warning and risk management systems are very important for adapting to future climate.
- Distributed response system may also be required to unload impacts. Possible measures for distributed response system may include rainwater harvesting, water recycling, groundwater, small lake, etc..

© Eric Knight Holbrook http://www.bestweb.net/~wirewolf

Thanks for Listening! Any Question is Welcomed!

Ching-pin Tung, Professor Bioenvironmental Systems Engineering National Taiwan University Cptung@ntu.edu.tw