

Anomaly Propagation and Trend Detection of Land-atmosphere Hydrologic Cycle Changes

November 2, 2010

Presented at the International Workshop of Water Vulnerability & Adaptive Governance under the Climate Change & Development, Beijing, China

Pat Yeh, M. Yuan and Taikan Oki

OKI Laboratory, Institute of Industrial Science, University of Tokyo, Japan

Outline of the Talk

- Combined Land–atmosphere water balance and hydrologic cycles
- Study Region Illinois and Data
- Characteristics and Anomaly propagation through the combined Land-atmosphere hydrological cycle
- Mann-Kendall test to identify the annual and monthly trend of Hydro-climatic Variables (1970 -2009)
- Conclusions

Motivation: Warming vs. Hydrologic Cycle Intensification

- Clasius-Clapeyron relation for P-T relationship? Thermodynamic vs. Dynamic contribution ?
- Water-resources sustainability ??
- IPCC AR4 more storms, floods, droughts, heat waves in the 21st century??
- However, empirical evidence on the intensification of hydrological cycle are not well established; Regional analyses are variables and sometimes contradictory
- Existing empirical evidence does not yet support an increase in the frequency or intensity of floods and droughts

• Numerous trend detection studies have been performed with respect to the records of past temperature, precip. and streamflow (*trend direction, magnitude, mechanism*??). To our knowledge, none or very little have considered most water balance components in the combined land-atmospheric hydrologic cycles. Therefore, the whole picture of hydrological signatures as a result of climate/environemntal change cannot be revealed.

(Courtesy of ISWS)

1970-2009 Illinois Monthly Precip. vs. Temp. Standardized Anomalies

Global Water Cycle: Storages and Fluxes

Combined Land surface-Atmospheric Water Balance

convergence and river discharge data based on combined water balance

Illinois Long-term Hydrometeorology Network

 One of the very few regions with almost the entire set of long-term (from 1970s or 1980s on) observations for most water balance components

Humidity and Atmospheric Vapour
Convergence based on NCEP/DOE R2
Reanalysis Data

 Using terrestrial and atmospheric water balance computations to estimate ET respectively.

Data	Station #	Resolution	Sources
Precip. / Snow	129	daily	MRCC
Soil Moisture	19	bi-weekly	ISWS
Water Table Depth	19	monthly	ISWS
Streamflow	3	daily	USGS

Observational Newtworks of Soil Moisture, Groundwater Level, and River Flow in Illinois

25-year (1985-2009) monthly time series in Illinois

Note: Snow storage is relatively insignificant compared to SM & GW in Illinois

1985 – 2009 Mean Seasonal Cycles of Terrestrial and Atmospheric Water Balances

Carry-over effect with R lag behind C in 1996, 2000-2007

乡 10

1979 – 2009 monthly P, R, GW Depth

Subsurface Runoff Dominates Runoff Generation in Illinois

Hydroclimatic Trend Detection in Illinois

- The monthly and annual temperature and precipitation were from Southern Climate Impacts Planning Program (SCIPP) over the last 40 years (1970-2009, data from 1895-).
- 60 NCDC climate stations across 9 climate divisions of Illinois to obtain monthly and annual maximum and minimum T, snowfall and snow/rain days in 1970-2009.
- Apply non-parametric Mann-Kendall test to the original time series and their 3-year, 5-year moving averages to detect the trends.
- Significant level for the statistically meaningful detection was set as 5% (|Z| > 1.96) to 1% (|Z| > 2.58).
- If statistically meaningful trend is identified, use both the (1) least-square method and (2) Kendall-Theil robust regression to find the magnitude of the trend

List of Data Used

	Time series	Unit	Data sources and notes				
т	1970-2009	°C	State average, Southern Climate Impacts Planning				
Р	1970-2009	mm/mo. or mm/yr.	Program (1895-)				
T _{max}	1970-2009	°C	Illinois State Water Survey (ISWS), mean value of 60				
T _{min}	1970-2009	°C	weather stations in 9 climate divisions.				
Snow	1970-2009	mm/mo. or mm/yr.	U.S. Cooperative Network snowfall (SF) were used to validate our result (R ² = 0.99).				
D _{snow}	1970-2009	Days					
D _{rain}	1970-2009	Days					
С	1985-2009	mm/mo. or mm/yr.	NCEP/DOE R2 Reanalysis				
Intq	1985-2009	mm	NCEP/DOE R2 Reanalysis				
E	1985-2009	mm/mo. or mm/yr.	Estimated from Water Balance Computation				
R	1970-2009	mm/mo. or mm/yr.	USGS streamflow stations				
GW	1970-2009	m	ISWS in situ measurements				
SM	1985-2009	mm	ISWS in situ measurements				
dS/dt	1985-2009	mm/mo. or mm/yr.	Derived from ISWS SM and GW data				

Annual Trends: T, P, Intq and E

P (1970-2009, mean = 1007 mm/yr)

Intq (1985-2009, mean = 18 mm)

E (1985-2009, mean = 691 mm/yr)

Annual Trends: Snowfall, Snow days, (monthly) T_{max} and T_{min}

Snowfall (1970-2009, mean = 51.5 mm/yr)

T_{max} (1970-2009, mean = 17.1 °C)

Snow days (1970-2009, mean = 11.7 day)

T_{min} (1970-2009, mean = 5.6 °C)

Annual Trends: C, R, SM and GW

C (1985-2009, mean = 300.3 mm/yr)

2m - SM (1985-2009, mean = 713 mm)

R (1970-2009, mean = 313.7 mm/yr)

GW Depth (1970-2009, mean = -3.74 m)

Monthly Trends (|Z| > 1.96 (95%) and > 2.58 (99%))

	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV
Т	+	+	+						+			+
(°C)	0.03	0.12	0.08						0.013			0.04
Р		+		-							+	
(mm/mo.)		0.84		0. 90							0.41	
С											+	
(mm/mo.)											1.34	
Intq		+			+	+			+		+	
(mm)		0.09			0.07	0.06			0.09		0.15	
E		+	+								-	
(mm/mo.)		0.47	1.48								0.47	
R	-	+		-	-		+					
(mm/mo.)	0.33	0.13		0.50	0.79		0.34					
dS/dt											+	
(mm/mo.)											1.35	
SM											+	
(mm)											1.06	
GW				-	-				-	-		
(m)				0.009	0.010				0.007	0.007		

Г

Monthly Trends (Winter)

		Μ	ean (trend magnitude, %)
	Dec	Jan	Feb
т (°С)		-3.72 (+0.12)	- 1.05 (+0.08)
T _{max} (°C)		1.23 (+0.09)	4.22 (+0.05)
T _{min} (°C)		- 8.18 (+0.11)	
P (mm/mo.)		52.9 (+0.84, +1.6%)	
Snow (mm/mo.)	16.6 (-0.11, -0.7%)	11.8 (-0.23, -1.9%)	6.3 (-0.22, -3.5%)
DAY _{snow} (d/mo.)	3.89 (-0.02, -0.5%)	2.70 (-0.06, 2.2%)	1.35 (-0.05, -3.7%)
DAY _{rain} (d/mo.)			
C (mm/mo.)			
Intq (mm)		8.25 (+0.09, +1.1%)	
E (mm/mo.)			
R (mm/mo.)	27.1 (-0.33, 1.2%)	29.6 (+0.13, +0.4%)	
dS/dt (mm/mo.)			
SM (mm)			
GW (m)			

Monthly Trends (Spring)

Mean	(trend	magnitude. %)	
mean	1		

	Mar	Apr	May
т (°С)			
T _{max} (°C)			
T _{min} (°C)			
P (mm/mo.)	80.8 (-0.90, -1.1%)		
Snow (mm/mo.)	6.28 (-0.16, -2.5%)	128 (-0.07, -5.5%)	
DAY _{snow} (d/mo.)	1.35 (-0.03, -2.2%)	0.26 (-0.01, -3.8%)	
DAY _{rain} (d/mo.)	9.72 (-0.08, -0.8%)		
C (mm/mo.)			
Intq (mm)		20.89 (+0.07, +0.3%)	27.75 (+0.06, +0.2%)
E (mm/mo.)			
R (mm/mo.)	43.0 (-0.50, -1.1%)	41.0 (-0.79, -1.9%)	
dS/dt (mm/mo.)			
SM (mm)			
GW (m)	-3.23 <mark>(-0.009)</mark>	-3.33 <mark>(-0.010)</mark>	

March Trends: P, Snowfall, R, GW

Snowfall (1970-2009, mean = 6.28 mm)

R (1970-2009, mean = 43.0 mm)

GW (1970-2009, mean = -3.23 m)

Monthly Trends (Summer)

Mean (trend magnitude, %)

	Jun	Jul	Aug
T (° C)			23.0 (+0.013)
T _{max} (°C)	25.9 (-0.033)		
T _{min} (°C)	16.0 (+0.019)		17.1 (+0.017)
P (mm/mo.)			
Snow (mm/mo.)			
DAY _{snow} (d/mo.)			
DAY _{rain} (day/mo.)			
C (mm/mo.)			
Intq (mm)			24.19 (+0.094, +0.4%)
E (mm/mo.)			
R (mm/mo.)	30.9 (+0.34, +1.1%)		
dS/dt (mm/mo.)			
SM (mm)			
GW (m)			-4.11 (-0.007)

Monthly Trends (Autumn)

Mean (trend magnitude, %)

	Sep	Oct	Nov
т (°С)			5.59 (+0.04)
T _{max} (°C)	25.86 (+0.02)		
T _{min} (°C)			
P (mm/mo.)		76.88 (+1.34, +1.7%)	
Snow (mm/mo.)			2.97 (-0.18, -6.0%)
DAY _{snow} (d/mo.)			0.68 (-0.03, -4.4%)
DAY _{rain} (d/mo.)			9.04 (-0.05, +5.5%)
C (mm/mo.)		21.51 (+0.41, +1.9%)	
Intq (mm)		17.12 (+0.15, .+0.9%)	
E (mm/mo.)		49.17 (-0.46, -0.9%)	
R (mm/mo.)			
dS/dt (mm/mo.)		17.12 <mark>(+1.35)</mark>	
SM (mm)		673.1 (+1.06)	
GW (m)	-4.24 (-0.007)		

October Trends: P, C, Intq, E, SM

C (1985-2009, mean = 21.5 mm)

Intq (1985-2009, mean = 17.12 mm

SM (1985-2009, mean = 673.1 mm)

Shift in Seasonal Cycle: 1970-1985 vs. 1986-2009

Conclusions

- Statistically significant trends (confidence level > 95%) identified from 1970-2009 annual time series of major hydroclimatic variables in Illinois: T increased by 0.027° C/yr., leading to intq and E both increased. P has no significant trend detected. Snowfall amount and snow days decreased, and Tmax and Tmin both increased.
- Winter months accounted for most of annual T increase. The following "direction-wise" consistent trends among major water balance components are identified:
 - ✓ For <u>January</u>, T increased winter (+ 0.11° C/yr.). Intq increases 1.6.%/yr., P increases 1.1 %/yr.. which led to +0.4%/yr. increase in runoff.
 - ✓ For <u>March</u>, no trend was detected for T, Intq, C and E, but a -1.1 %/yr. decreasing trend was identified for Precip. As a result, Runoff showed decreased trends in March (-1.1 %/yr.) and propagated into April (-1.9 %/yr.), also GW showed declining trend for the two months(~1 cm per month).
 - ✓ For <u>October</u>, no trend was found in T, but Precip. increased 1.3 mm/yr., C and Intq also increase +1.9 %/yr. and +0.9 %/yr., respectively. Soil moisture shows positive trend, and Total water storage change dS/dt show a consistent response of 1.3 mm/yr.

Pat Yeh Institute of Industrial Science, The University of Tokyo Email: patyeh@iis.u-tokyo.ac.jp

of Mousting http://by.dra iio					22	
ILLINOIS 1985-2009 Annual (25) Monthly (300) Anamoly(300) Daily (9131 days)	Precip.	Evapo.	Corr. Vapor Converg.	Runoff	d\$/dT	S
Precip.	1	0.113	0.945	0.791	0.662	0.707
	1	0.343	0.443	0.365	0.316	0.273
	1	0.028	0.831	0.456	0.731	0.471
	1	0.338	0.600	0.049	0.539	-
Evapo.		1	-0.218	-0.163	-0.180	-0.279
		1	-0.686	-0.174	-0.725	-0.338
		1	-0.511	-0.169	-0.506	-0.202
		1	-0.281	-0.038	-0.603	-
Corrected Vapor			1	0.828	0.712	0.784
Converg			1	0.473	0.921	0.568
converg.			1	0.462	0.912	0.506
			1	0.047	0.754	-
Runoff				1	0.197	0.877
				1	0.104	0.775
				1	0.104	0.752
				1	-0.040	-
dS/dT					1	0.274
					1	0.291
					1	0.266
					1	1

Daily Dynamics of Water Balance Components

1988 Drought vs. 1993 Flood

