# Test of dynamical downscaling for TCCIP project

Seasonal precipitation simulation of WRF model driven by ECHAM5 and MRI/JMA data

Chao-Tzuen Cheng<sup>1</sup>, Chuan-Yao Lin<sup>2</sup>, Yi-Yin Lin<sup>3</sup>, and Yin-Ruei Chuang<sup>2</sup>

<sup>1</sup>National Sciences and Technology Center for Disaster Reduction <sup>2</sup>Research Center for Environment Change, Academia Sinica <sup>3</sup>Dept. of Earth Sciences, National Taiwan Normal University

Downscaling by WRF model dom1:  $\Delta x=5km$  380x400 grids dom2:  $\Delta x=1.6km$  450x450 grids 36 vertical layers 15-layer buffer zone □ Initial and Boundary conditions are provided by :

- MRI/JMA 20km AGCM
- ECHAM5/MPI-OM ~180km AOGCM
- 5 km WRF is used to do downscaling for climate simulation of present (1979-2003), near future (2015-2039), and end of century (2075-2099)
- 1.6 km WRF is used to do downscaling for extreme precipitation cases (typhoon and Meiyu)
- Results of seasonal precipitation of year 1985 are presented, and rain gauge measurements since 1990 is used as reference.

### Terrain in models

- 1100





### Land Use for dynamical downscaling



### **Physical Option**

- □ Noah land surface module □ RRTM LW scheme
- YSU Boundary scheme
- □ WSM 6-class microphysics □ Monin-Obukhov
- no cumulus scheme

Dudhia SW scheme

surface layer scheme

Strategy for preventing climate drift

- Spectral nudging (wave # 4) for U, V, and  $\Phi$ . No nudging for T and q (MRI-WRF & ECHAM5-WRF)
- Cold start for every 3 day (ECHAM5-WRF)

August 1985 With FDDA spectral nudging wave # 4



- Mean ratio for cu/nocu is 1.028
  - Mean ratio for cu1/nocu is 0.978

8/14 1985

#### With or without cumulus parameterization



### With or without nudging

#### **Monthly Precipitation of MRI-WRF**



#### **Monthly Precipitation of MRI-WRF**



#### MRI 1985 ∆x=5km





### **Monthly Precipitation of ECHAM5-WRF**



#### **Monthly Precipitation of ECHAM5-WRF**



#### ECHAM5 1985 ∆x=200km



#### ECHAM5-WRF 1985 $\Delta x=5 \text{km}$



### 4 areas of Taiwan for analysis



\*concentrate on plains

# Number of wet days (>1 mm/day) in CLIMATOLOGY / MRI / WRF



South

East





# Seasonal Mean Precipitation (mm/day) in CLIMATOLOGY / MRI / WRF



South

East





### Number of wet days (>1 mm/day) per month and seasonal mean precipitation (mm/day) in ECHAM5- WRF

|        | North          | Central        | South          | East           |
|--------|----------------|----------------|----------------|----------------|
|        | Rain / Wet day |
| Spring | 9.0 / 15.1     | 10.4 / 12.8    | 11.3 / 13.6    | 22.1 / 22.5    |
| Summer | 14.5/ 16.9     | 20.7/ 19.4     | 32.4 / 22.1    | 36.8 / 23.9    |
| Autumn | 6.6 / 13.1     | 2.2 / 4.7      | 3.7 / 7.8      | 26.5 / 24.7    |
| Winter | 7.7 / 15.6     | 2.2 / 6.4      | 2.8 / 7.6      | 14.3 / 21.1    |
| Meiyu  | 14.4 / 19.5    | 23.4 / 20.2    | 31.5 / 21.4    | 39.8 / 25.5    |

- Nudging is necessary to reproduce the main precipitation pattern
- Except summer time, MRI tend to produce more rain in east Taiwan
- □ Spatial distribution of monthly precipitation of MRI-WRF is more close to that of observation.
- Not only add spatial details of precipitation, but also fix some precipitation bias of GCM
- MRI-WRF produce less rain than MRI in all 4 areas of Taiwan
- ECHAM5-WRF produce too much precipitation to the east of Taiwan all year round, which could be caused by the easterly in ECHAM5 and the terrain in WRF.

### Characteristic of precipitation PDF



- North and east areas are similar
- Central and south areas are similar













Conclusion based on simulation of year 1985

- Two sets of GCM output (MRI and ECHAM5) with different spatial resolution are used to initialize and force the boundary of the WRF model.
- Although the magnitude is lower, the precipitation of MRI-WRF seems to be more realistic than that of MRI in term of spatial distribution.
- Te precipitation PDF of MRI-WRF shows too much light rain than rain gauge observation of 15~19 years.
- The results of ECHAM5-WRF need to be investigated more. If necessary, its downscaling strategy (cold start for every 3 days) may have to be reconsidered.

# Thank you for your attention!