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Introduction

« Climate change is now an unequivocal truth, and it is expected to
strongly affect the hydrologic cycle in the coming decades.
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Introduction

« Water supply condition in Japan is not stable even now
due to its severe seasonal variation and high population density.

« So far, this water related problems have been skillfully handled with
many types of reservoir and multi-purpose dam.




Introduction

« However,
this current dam operation rules may not work properly for the
changed hydrologic cycle in the future.

» Future hydrologic impact analysis should be carried out with
consideration for the sophisticated water control and usage.



Objectives

Future river flow changes in the Tone River basin, Japan,
were investigated using a distributed hydrologic model considering
multiple dam reservoir operations and current water usage condition.
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General Circulation Model Output
Distributed Hydrologic Model
Reservoir Operation Model

Future Water Resources Analysis
— Flow Duration Curves

— Mean Flow and Minimum Flow

— Flood Peaks in Hourly and Daily



MRI-AGCM20km

Rapid evolution of GCMs in the last three decades allows us to
expect reasonable hydrologic dataset from the model output.

Source: IPCC AR4 (WGH1)

Figure 1.4. Geographic resolution characteristic of the generations of climate
models used in the IPCC Assessment Reports: FAR (IPCC, 1990), SAR (IPCC, 1996),
TAR (IPCC, 2001a), and AR4 (2007). The figures above show how successive genera-
tions of these global models increasingly resolved northern Europe. These illustra-
tions are representative of the most detaifed horizontal resolution used for short-term
climate simulations. The century-long simulations cited in IPCC Assessment Reports
after the FAR were typically run with the previous generation’s resolution. Vertical
resolution in both atmosphere and ocean models is not shown, but it has increased
comparably with the horizontal resolution, beginning typically with a single-layer stab
acean and ten atmospheric layers in the FAR and progressing to about thirty levels in
both atmosphere and ocean.




MRI-AGCM20km

Rapid evolution of GCMs in the last three decades allows us to
expect reasonable hydrologic dataset from the model output.

In 2007, Japan’s Ministry of Education, Culture, Sports, Science,
and Technology (MEXT) launched the Innovative Program of
Climate Change Projection for the 21st Century (Kakushin21), and

have developed a super-high-resolution atmospheric model
having 20-km spatial and 1-hour temporal resolution (AGCM20).
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MRI-AGCM20km

Spatial Resolution
1920 x 960 grid cells (20 km) with 60 vertical levels (TL959L60)
Temporal Resolution
Hourly precipitation with other daily variables
SST Boundary Condition
Observed HadlSST1 dataset for controlled run
Ensemble Mean of CMIP3 A1B scenario for projection run
A1B scenario of Special Report on Emissions Scenarios (SRES)
2.5 temperature increase and 720 ppm of CO, concentration by 2100
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AGCM20 Output Evaluation

How much we can trust the AGCM20 output?

Reliance on the model output can be achieved by evaluating
the output for the present climate.
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Research Concepts

/ /' RAINFALL

1. Data Evaluation
2. Simulation

AMeDAS Compare AGCM20 AGCM20
Observation to validate (Present) (Future)
Hydrologic Model : Hydrologic Model
(Calibration) (Simulation)
Observed Compare Simulated Discharge
Discharge to validate Discharge (Future)

3. Analysis
searching for any significant
water resources problems
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AGCM20 Output Evaluation

AMeDAS Observation Points

Using the AMeDAS observation of

over 1,300 gauging stations
(averagely 17 km distance to each other)

point gauged data - 20km grid data

Annual Mean Precipitation of 25-yrs (1979~2003)

Annual Mean Precipitation by AMeDAS

AMeDAS 1684.25mm
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AGCM20 Output Evaluation

AMeDAS Observation Points

Using the AMeDAS observation of

over 1,300 gauging stations
(averagely 17 km distance to each other)

point gauged data - 20km grid data

Annual Mean Precipitation of 25-yrs (1979~2003)

Annual Mean Precipitation by AMeDAS

mm

AMeDAS 1684.25mm

3000

2500 AGCM20 1695.24mm

2000 (1) 1985.81mm vs. 1959.09mm
1500 (2) 1753.25mm vs. 1797.28mm
1000 (3) 1128.93mm vs. 1129.56mm
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Spatial Pattern Correlation
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AGCM20 Output Evaluation

Annual Mean Precipitation by AMeDAS
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AGCM20 Output Evaluation

Daily Maximum from a grid in Kanto
Regression Coefficient = 0.672
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Reproducibility of daily and hourly maximum
was evaluated by checking 100 maximums of
AGCM20 output and AMeDAS observation.

100 maximums = 4 maximums X 25 years.

Underestimated Extreme Values



AGCM20 Output Evaluation
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Long-term Simulation using
MRI-AGCM20km Output Data

INPUT
Precipitation
-precipi (hourly) |
-presl (daily)
-sn2sl
Evapo-transpiration
-evpsl
-trnsl

Precipitation (PRECIPI)

<
<

Canopy

SN2SL PRCSL
Snowmelt Throughfall Into soil
v v

1st soil layer

G

i BTN

OUTPUT
Hourly discharges
at every point

in the basin




Modeling the Tone River Basin (8,772 km?)

@ Main Points
- Yakatahara (1677.5 kmZ?)
- Yattajima (5133.6 km?)

- Tone-Ozeki (6058.8 km?)
- Kurihashi (8772.2 km?)

16 sub-basins including
7 dam-basins.

@® Dam Points
- Yagisawa Dam
- Naramata Dam
- Fujiwara Dam

Parameters have been

- Aimata Dam x i:1 . .
- Sonahas Dam W optimized for each sub-basin.
- Shimokubo Dam C ‘ﬁ'

(listed from the top)

- ' calibration with 1995~1999
s~ «= non-snowfall/melt season with
- __@ hourly precipitation and monthly

EULE

averaged evaporation data

Runoff Simulation using
Kinematic Wave Model

(250m resolution DEM)
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Rainfall-Runoff Simulation Results using

AGCM20 Present Climate Output
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Rainfall-Runoff Simulation Results using
AGCM20 Present Climate Output

Ya_katahara PresentiVithDam Slmulnlad
Yakatahara (1677.5 km2) T K
Obs. flow: 47.1 cms (884.8 mm) , o, S
Sim. flow: 65.5 cms (1230.6 mm) g;{e 0= [
39.1 % overestlmatlon Gad | (i
WS 2 .
Yattajima (5133.6 km2) ‘ 8 [ | Yamajima o=
Obs. flow: 177.6cms (1090.8mm) = ' | e R
Sim. flow: 212.9cms (1308.1mm) e > L e
19.9 % overestimation ,%! évm.
-
iy |
‘.‘.I;;—} 'Fl/ 1400 5 = T —
4 -‘___.f-[;ﬂ_ ol Kurihashi resentiVithDam Simulated
Kurihashi (8772 2 kmz) o 't gl ‘ / '---5_,,_;!‘ 2 800 |
Obs. flow: 296.7cms (1066.6mm) = : =1 [OSR § oo
Sim. flow: 353.9cms (1272.4mm) A
19.3 % overestimation ( / 2°°
z ) || \ N o

Scale Inconsistency:
Not enough for small basin (scale), but
Good enough for larger basin (scale)
Criteria is somewhere around 3 X 3 grids (?)




Reproducibility of the AGCM20 Output

Table 1 Reproducibility of Each Sub-basin

677.5 km?2)
33.6 km?)
058.8 km?2)
72.2 km?)

(«e¥BURG | SRREAET — .

lar Apr May Jun Jul Aug Sep Oc Nov Dec
Time (month()]

g:?;‘; 3{‘::?) NSC | Vol. Ratio
Aimata 110.8 0.54 -10.2 %
Kusaki 154.0 0.39 +1.1 %
Yagisawa 167.4 0.13 -553%
Sonohara 493.9 -0.18 +39.6 %
Takamatsu 557.4 0.14 +39.9 %
Otome 873.7 0.39 +18.5%
Murakami 1249.2 -1.74 +49.2%
Yakatahara 1677.5 0.65 +26.1%
Yattajima 5133.6 0.49 +3.5%
Tone-Ozeki 6058.8 0.45 -7.3%
Kurihashi 8772.2 0.59 -2.0%

*NSC: Nash-Sutclifte Coetticient
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esearch Concepts

RAINFALL

1. Data Evaluation

2. Simulation
AMeDAS Compare AGCM20 AGCM20
Observation to validate (Present) (Future)
Hydrologic Model ; Hydrologic Model
(Calibration) : (Simulation)
Observed Compare Simulated ™\Discharge
Discharge to validate Discharge (Future)

3. Analysis
searching for any significant
; water resources problems



Objectives

Future river flow changes in the Tone River basin, Japan,
were investigated using a distributed hydrologic model considering
multiple dam reservoir operations and current water usage condition.

Contents

General Circulation Model Output
Distributed Hydrologic Model
Reservoir Operation Model

Future Water Resources Analysis
— Flow Duration Curves

— Maoaan Elaw and Mlinimiimim Elaw



Dam Reservoir Operation Model

Hard to find the standard operation rule

Depending on precipitation amount and
water demand of each year

Averaging the recent 10 years operation
Operation Records of 1994~2003
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Dam Reservoir Operation Model
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Controlled Outflow of Present & Future

By the designed dam reservoir operation,
|t was able to realize similar pattern to the current one.
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Current Water Demand in
the Tone River Basin

Yakatahara Ota-Tousyukou
g water: 3.09 m3/s [ Agricultural water:
ultural water: ' | Sep~May 2.82 ~7.43 md/s
Viay 1.39 ~ 3.48 md/s | June~Sep  14.33~18.15m?3/s
~Sep  12.17~14.20m3/s ¥/

bukawa
ultural water:
~46.10 m3/s
Tone-OzeKki
Wakaizumi e Living water: 37.43 m3/s

ultural water: e Industrial water: 2.08 m3/s



m Control Effects at
,katahara (1677.5 km2)

/4

im Demand
1g water: 3.09 m3/s
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m Control Effects at
ttajlma (5133.6 km?) 00
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Changes in Precipitation
Seasonal Pattern

Table 1. Net-water-resources amount in each region
(annual amount averaging 25 years)

\ate change would Region (P“."t"“‘“‘) f;‘“‘“““;}; {f‘“‘“‘*‘m
unit: mm [ ﬂﬂgESZ o C E_ﬂgE‘SZ (1]
elerate wa’_te_r cycles —— o076 ITH: 155
more precipitation and (6.68) (6.19)
) ; Tohoku 8344 838.0 7897
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Possible Extreme Events
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Flood Simulations with
Possible Extreme Events
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Possible Extreme Events




Possible Extreme Events




Summary

\ate change impacts analysis on the Tone River Basin

Jsing the super high resolution GCM output (20km/spatial & 1hr/temporal)

Distributed hydrologic model considering multiple dam reservoir operations
Dam model to reproduce the current dam release patterns

\ssuming that the future water demand will be the same to the present one

ent dam reservoir operation rules are effective
-specially at the right downstream of the dam reservoirs
-or most of the season except the late spring season

e-Ozeki has high possibility of water shortage in the future
Necessary to modify the operation rules for the late spring season water supply
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Thank you very much!

further information
sunmin@hywr.kuciv.kyoto-u.ac.jp



revious Method

PRECIPI
Precipitation

EVPSL TRNSL
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(Snowmelt)
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Revised

T

PRECIPI
Precipitation

v

Bias Correction
using
Observed Precipitation

EVPSL

(Evaporation) | | (Transpiration)

TRNSL

RAINFALL Snowfall
(T > 0) (T <0)
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]

SNOWMELT
using
Degree-Day Method

l



Bias Correction with
Daily Scaling Method

ple of sorted daily precipitation from the AphroJP observation and
M20 output with the ratio of these two values (r=P/P,,s) for April
-August (middle), and December (right). Each month has different
e of ratio values. This sample data comes from the nearest grid point
2 Yaglsawa Dam Basin.
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Bias Corrected Precipitation
Annual mean Precipi

Aphro AGCM20 AGCM BCed




Temperature Evaluations

Obs. Sim. 0-S




mproved Simulation Results (Yagisawa Dam Basin)

., PRCSL

orrectec
itation

Discharge (mm~3/sec)

Discharge (mm*3/sec)

70

60

40 |

30 -

20

10 +

70

60

40 |

30 F

20 +

AGCM-3.1S

0 50 100 150 200 250 300 350
Time (day)
sim ——
obs

Discharge (mm~3/sec)

Discharge (mmA3/sec)

70

60

40 |

30 -

20

10 +

70

60

40 |

30

20

AGM-3.2S

0 50 100 150 200 250 300 350

Time (day)
sim
obs




onsidering Social Vulnerability Change

isaster = £, (Meteorological f., Geomorphologic f., Social factors)

\nges in meteorological factors (AM.F.) are apparent in the coming century
inges in geomorphologic factors (AG.F.) are negligible.

inges in social factors (AS.F.) also should be considered in the climate change
2search to propose successful adaptation methods.

| Disaster = A £, (AM.F., AS.F.)

od disaster case

Meteorological factors: heavy rainfall/ snowfall, rainfall duration, etc
Geomorphologic factors: shape of catchments/ river, land cover, etc
Social factors: river management, deforestation, etc

iter resources management case

Meteoroloaical factors: annual orecini amotunt. seasonal variation etc



Further Research

To develop proper dam operation rules for the future water reqgimes
— Should consider the shifted snowmelt season with decreased amount
— Plus, flood control function in the summer season

To estimate future water demands
— Water demand changes as society changes
— Natural water usage such as agricultural usage will be changed.

To identify the uncertainty in the future projection
— Uncertainty in the AGCM20 output
— Uncertainty in the water resources assessments

To improve the accuracy of the input and output
— Downscaling & bias correction, especially for small basin
— Improving the model performances under the various situations
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