

www.ncdr.nat.gov.tw

Taiwan Climate Change Projection and Information Platform Project

Uncertainty of Climate Change – Case studies on Impact Assessment

Shen Chiang, Hsiao-Ping Wei, Yun-Ju Chen, Jun-Jih Liou National Science and Technology Center for Disaster Reduction

2011 International Conference on Climate Change 2011.12.06-08

Taiwan Climate Change and Information Platform (TCCIP) project

Funded by NSC, the project of Taiwan Climate Change and Information will provide climate projection as the scientific basis for the policy making of climate change adaptation and impact mitigation.

Outline

- Introduction
- Uncertainty of climate change assessment
- Case studies
 - Impact and uncertainty of climate change on hydrologic design of flood
 - Impact and uncertainty of climate change on water resources
- Results and discussion
- Conclusion

Introduction

www.ncdr.nat.gov.tw

 Two case studies for quantifying uncertainty of hydrological impact under climate change were demonstrated.

 First case study is focused on flood impact and natural variability with observed records and bias corrected MRI data. <u>Bootstrap resampling</u> method was used as uncertainty quantifying technique for natural variability.

Introduction

www.ncdr.nat.gov.tw

 The second case study is exploring the uncertainty of water resource impact under climate change scenario. Studying uncertainty sources included GCMs, GHGs emission scenarios, WGs, projected period, and selected grids. Uncertainty of flow changed ratio was demonstrated by empirical cumulated distribution and confidence interval.

Sources of uncertainty

Uncertainty in the result display

www.ncdr.nat.gov.tw

國家災害防救科技中心 National Science and Technology Center for Disaster Reduction

Aim of this study

www.ncdr.nat.gov.tw

- To assess influence and uncertainty of on hydrologic design due to climate change through analyzing the 1/100 maximum annual 24 hours rainfall from observation and Japan MRI data.
- 2. To estimate impacts and uncertainty of water resources due to climate change through simulating stream flow in wet and dry spell from statistical downscaling ,weather generator and hydrological model based on various GCMs and emission scenarios.

Impact of climate change

Flood

- Change of rainfall frequency
- Increased in the occurrence of extreme events
- Increased flood protection criteria •

Water resource

- Frequency and Duration of drought
- Amount and timing of Inflows to reservoirs
- Reliability of water supplies
 - Size and timing of flood control space

Data and model

www.ncdr.nat.gov.tw

1. Impact and uncertainty of climate change on hydrologic design of flood

- Rainfall frequency analysis
- Flood Impact
- Data uncertainty

 The approach of the study is begun with the analysis of the past rainfall observation, try to answer the question: Within limited future climate projection, what is the meaning of our impact analysis results?

- The standard for Taiwan's flood
 preventing construction
 - Tanshui river basin (Metropolitan Taipei area): R.P.= 200 years
 - Central government in charge rivers: R.P.= 100 years
 - Local government in charge rivers: R.P.= 50 years
 - Urban drainage
 system: R.P.= 5 years

- Recommended Empirical Distribution for Rainfall Frequency Analysis in Taiwan(proposed by WRA):
 - Northern Taiwan: PT3 \ LPT3 \ LN3
 - Central Taiwan: PT3 \ LPT3
 - Southern Taiwan: PT3 、 LPT3
 - Eastern Taiwan: PT3 、 LPT3 、 LN3

12

Flowchart for assessing flood impact

Climate change impacts to hydrological design and uncertainty assessment

Different time period and scale

www.ncdr.nat.gov.tw

By manipulating the AGCM data which provided by MRI for performing the impact analysis, we would like to know the possible influence which related to the data length (present, near future and end of the century, 25 years data length for each).

Two types of bias correction approaching

MRI(P) / Obs.(P) = E (for each percentile) MRI(NF) / E = NFMRI(F) / E = F

MRI(P): Present(1979~2003) MRI(NF): Near future(2015-2039) MRI(F): Far future (2075-2099) Obs. (P) :Observation rainfall data E:MRI present rainfall data(1979~2003)/ Observation rainfall data (1979~2003) NF: Bias corrected MRI data in near future F : Bias corrected MRI data in far future

Bias correction with MRI data

3

Natural variability of observation data

Data from 1897 to 2009, time window 25 years, shifted from 1897 to 1985

Natural variability of observation data

Data from 1897 to 2009, time window from 25 years to 113 years

www.ncdr.nat.gov.tw

Bootstrap resampling

- Both historical records and MRI data were separated into three periods(1979~2003, 2015~2039, and 2075~2099).
- 99 samples were resampled using Bootstrap method from each period data of historical records and MRI data.
- Percentiles (5%, 50%, and 95%) of both samples were compared to explore natural variability under observations and MRI data.

Natural variability using MRI and WRF data

- Historical observations(sample length:25-25, 25-31)
 - obs x1 + bootstrap sample x 99=100
 - MRI:
 - 25 yrs(three periods,1979-2003, 2015-2039, and 2075-2099)
 - 75 yrs(one period composed of 1979-2003, 2015-2039, and 2075-2099)
 - 121yrs(1979-2099)

Historical observation data

By using historical rainfall data (1979-2009), 2 kind of time window are applied for rainfall frequency analysis (1/100, 24 hours rainfall, PT3 distribution), also bootstrap resampling is applied for variability assessment.

MRI data variability

Rainfall gauge station • MRI and WRF data

Compare results of bias correction

Rainfall frequency analysis with bias-corrected MRI data

Flood impact with bias-corrected MRI data

Rainfall duration: 24hr ; return period: 100yrs								
	BC1			BC2				
(year)	1979~2003	2015~2039	2075~2099	1979~2003	2015~2039	2075~2099		
(mm)	618.12	431.9	555.44	824.87	846.69	889.32		

A higher rainfall was yielded at 2075~2099 period, and a higher flood ratio was demonstrated using BC2.

Flow ratio under 24-hr rainfall duration and 100-years return period								
		BC1		BC2				
(year)	1979~2003	2015~2039	2075~2099	1979~2003	2015~2039	2075~2099		
(ratio)	1	0.64	0.88	1	1.03	1.10		

Comparison between different data and bias correction approaching

Flow ratio with original model output using KW-GIUH

	Tam-Sui river			Tseng-Wen stream		
KW-GIUH (original)	1979-2003	2015-2039	2075-2099	1979-2003	2015-2039	2075-2099
5km WRF	1	1.05	0.81	1	1.25	1.64
20km MRI	1	0.57	0.87	1	1.15	1.91

Flow ratio with bias-corrected data using KW-GIUH

	Tam-Sui river			Tseng-Wen stream		
KW-GIUH (BC1)	1979-2003	2015-2039	2075-2099	1979-2003	2015-2039	2075-2099
5km WRF	1	1.18	0.89	1	0.98	1.43
20km MRI	1	0.63	0.88	1	1.11	1.9

- Results show that obvious difference of flow ratios was yielded with WRF and MRI data.
- Due to hydrological rainfall frequency analysis using annual maximum series, it is necessary to downscale coarse climate data for better regional rainfall information.

Different data variability

5percentile

- 50percentile

95percentile

- OriginalData

5percentile

- 50percentile

95percentile

- OriginalData

20kmMRI with BC1

Natural variability at Kee-Lung station (46694) using 5km WRF data : NF>P>F Using 20km MRI data : F> P>NF

Natural variability at A-Li-Shan station(46753 using 5km WRF data : P>NF> F Using 20km MRI data : F =NF> P

5km WRF with BC1

Conclusions

- The frequency analysis of past observation rainfall data and MRI future climate projection has be done.
- The results show that within different time period or data length, the result of the rainfall frequency analysis are also different, which indicates that the representativeness (or you can say: data quality) of the data dominates the goodness of the results of the frequency analysis.
- Within limited information of the future climate projection, the uncertainty of the result of the frequency analysis and its influence to the impact assessment should be taken into consideration.

Results and discussion (I)

- 1. Natural variability of three periods by using MRI data: 2075~2099 >1979~2003 >2015~2039. This implies that data uncertainty at end-of-century(2075~2099) is higher than others.
- 2. Results show that obvious difference of flow ratios was yielded with WRF and MRI data. Due to hydrological rainfall frequency analysis using annual maximum series, it is necessary to downscale coarse climate data for better regional rainfall information.
- 3. Natural variability with original MRI and WRF data is higher than biascorrected MRI and WRF data.
- 4. Natural variability at Kee-Lung station (46694) using 5km WRF data : NF>P>F ; Using 20km MRI data : F> P>NF
- 5. Natural variability at A-Li-Shan station (46753) using 5km WRF data : P>NF> F; Using 20km MRI data : F =NF> P

www.ncdr.nat.gov.tw

2.Impact and uncertainty of climate change on water resources

- Stream flow impact in wet and dry spell
- Uncertainty of different scenarios
- Uncertainty of weather generation

Flowchart for assessing water resource impact

Uncertainty analysis

Impact of climate change on stream flow by the combination of various variables.

Change rate of stream flow under climate change

- 60% of GCMs are shown stream flow increase in wet spell and 80% of GCMs decrease in dry spell in near future.
 Range of change rate of stream flow is -20~30% and -
 - 40~40% in wet and dry spell respectively.

Change rate of stream flow in wet and dry spell

- Multi-model ensemble result is not significant. Change rate of stream flow only 2~4% in wet spell and -3~-8% in dry spell in near future.
- Greater variability of change rate of stream flow is in dry spell
- Variability of change rate: A1B>B1>A2

Impact of stream flow due to different scenarios

www.ncdr.nat.gov.tw

- The more increase in wet season and the more decrease in dry season
- Impact of stream flow is about ±40% under the worst case in the end of 21 century. It is a significant alert for water resource allocation.

Case study-Tamsui River catchment

Period	Spell	Scenario	Ensemble	Maximum	Minimum	Worst case
		A1B	7	24	-16	31
	Wet spell	A2	4	30	-8	25
2020-2039		B1	4	22	-16	27
(Near future)		A1B	-13	27	-44	-38
	Dry spell	A2	-21	9	-38	-41
		B1	-11	22	-33	-31
		A1B	13	38	-21	46
	Wet spell	A2	5	35	-21	29
2080-2099		B1	10	37	-15	35
(End of 21st century)	Dry spell	A1B	-19	14	-48	-47
oontory)		A2	-31	-5	-46	-49
		B1	-14	17	-43	-35

Compare results of selection gird

The result shown that the combination of selection gird and rainfall station is not significant difference for cumulative probability of change rate of stream flow.

N_RG_SR : Near Future_ Regional average grid _Single rainfall station
 N_RG_RR : Near Future_ Regional average grid _Regional average rainfall
 N_SG_SR : Near Future_ Single grid _Single rainfall station
 N_SG_RR : Near Future_ Single grid _Regional average rainfall

Compare results of selection GCM

www.ncdr.nat.gov.tw

•24 GCMs: All GCMs

•12 GCMs: Select GCM by characteristic of rainfall change rate in wet and dry spell
•9 GCMs: Select GCM based on performance of East Asia monsoon

- The variability and uncertainty of change ratio of stream flow is greater in dry.
- The two methods of choosing GCM all can reduce uncertainty of multi-model in wet spell.

Weather generator of different distribution

www.ncdr.nat.gov.tw

- Both exponent and weibull distribution can reproduce historical characteristics of monthly average rainfall.
- Variability of monthly rainfall is greater by Weibull distribution.
 exponential distribution of wet day in WG

weibull distribution of wet day in WG 60 50 **F** 40 + | 30 0 20 ц ф 10 2 3 4 5 6 7 8 9 12 1 10 11 month

Weibull distribution (WEB)

rainfall (cm)

Compare natural variability and the second s

The uncertainty in response among different scenarios is greater than the range due to uncertainty in natural variability.

Results and discussion (II)

- 1. In stream flow, 60% of GCMs are shown an increase in wet spell, 80% of GCMs are shown a decrease in dry spell in near future.
- 2. Selection GCM can reduce variability of multi-model, specially in end of 21st century °
- 3. Variability of stream flow in A1B scenarios is greater than other scenarios (A2,B1)
- 4. The uncertainty among different scenarios is greater than the range due to uncertainty in natural variability.
- 5. Both exponential and Weibull distributions can reproduce historical characteristics of monthly average rainfall. But variability of Weibull distribution is greater.

- www.ncdr.nat.gov.tw
- MRI data uncertainty at end-of-century(2075~2099) is higher than others.
- Natural variability is higher than bias-corrected MRI and WRF data.
- 60% of GCMs are shown streamflow increased in wet spell and 80% of GCMs are shown a decrease in dry spell in near future.
- Range of change rate of stream flow is -20~30% and -40~40% in wet and dry spell, respectively
- The impact of stream flow is A1B >B1> A2 scenarios

www.ncdr.nat.gov.tw

Thank you for your attention.