High-Resolution Modeling under the Program for Risk Information on Climate Change (SOUSEI Program)

Akio Kitoh University of Tsukuba

Global Change Projects using the Earth Simulator

KYOUSEI Project (FY2002-2006)

 \rightarrow Contributed to IPCC AR4 (2007)

KAKUSHIN Program (FY2007-2011)

→ Contributed to IPCC AR5 (2013), SREX (2012)

now SOUSEI Program (FY2012-2016) Program for Risk Information on Climate Change

Earth Simulator: ES1 (2002-2009) → ES2 (2009-2015) → ES3 (2015-)

High-resolution Atmospheric Global Climate Model

- High-resolution model
 - Small-scale structures such as tropical cyclones
 - Localized phenomena associated with small-scale topography
- Long-term simulations over several decades require good representations of:
 - Physical structures of the small-scale phenomena
 - Statistical climate of the small-scale phenomena
 - Global-scale climatology

History of MRI-AGCM3

MRI-AGCM3.0 (before 2007) (Mizuta et al. 2006; Oouchi et al. 2006) developed from JMA operational NWP model first 20km climate model which simulates for multi-decades

very minor change

MRI-AGCM3.1 (since 2007) (Kitoh et al. 2009; Murakami et al. 2011) AMIP-type experiment

introducing new parameterization schemes etc.

MRI-AGCM3.2 (current model) (Mizuta et al. 2012)

Reductions of the model biases of:

- insufficient precipitation amounts over the W. Pacific
- geographical distribution of tropical cyclones
- overestimated weak rain, underestimated heavy rain
- resolution dependence in terms of global-scale climate

Ensemble simulations with lower-resolution version

MRI-AGCM3.3 (2015~) including air-sea interaction

MRI-AGCM 3.1 vs 3.2

	Previous version	New version
	(for IPCC AR4)	(for IPCC AR5)
	MRI-AGCM 3.1	MRI-AGCM 3.2
	(Mizuta et al., 2006, <i>JMSJ</i>)	(Mizuta et al., 2012, <i>JMSJ</i>)
Horizontal	TL959 (20km)	
resolution		
Vertical resolution	60 levels (top at 0.1hPa)	64 levels (top at 0.01hPa)
Time integration	Semi-Lagrangian	
Time step	6minutes	10minutes
Cumulus	Prognostic Arakawa-Schubert	Yoshimura (Tiedtke-based)
convection		
Cloud	Smith (1990)	Tiedtke (1993)
Radiation	Shibata and Aoki (1989)	JMA (2007)
	Shibata and Uchiyama(1992)	
GWD	Iwasaki et al. (1989)	
Land surface	SiB ver0109(Hirai et al.2007)	
Boundary layer	MellorYamada Level2	
Aerosol (direct)	Sulfate aerosol	5 species
Aerosol (indirect)	No	

Problems with the previous 20-km mesh MRI-AGCM

Predicted TC number in the WNP is underestimated

TC intensity is weak compared with observations

Number for each basin denotes the annual mean number of TCs.

> Improved Improved

Murakami et al. (2012)

Comparison of projected future changes between models – TC intensity –

- Both models show significant decrease in the frequency of weak TCs
- New model (MRI-AGCM3.2) projects a more subtle increase in the frequency of intense TCs

JJA precipitation

All AGCMs successfully reproduces broad-scale rainfall patterns as well as orographic rainfall, although there are some differences among the models.

Performance of MRI-AGCM3.2S (20km) & H (60km)

4 monsoon metrics based by Wang et al. (2011 Clim Dyn)

Area: 45S-45N Ref.: (GPCP+CMAP)/2

RMSE: root mean square error, PCC: pattern correlation coefficient

MRI-AGCM3.2S (YS)
MRI-AGCM3.2H (YS)
MRI-AGCM3.2H (AS)
MRI-AGCM3.2H (KF)
CMIP5 AGCMs
CMIP5 CGCMs

Performance of MRI-AGCM3.2S (20km) & H (60km)

Performance of precipitation extremes

- Pav & CDD: all models have high skill
- R5d, R1d, R95p: YS and KF are good, AS has negative bias

Time-Slice Experiments using SST from CGCMs

Mexico, Columbia, Barbados, Belize, Bolivia, Peru, Ecuador, Brazil, Argentina, Australia, Papua New

Guinea)

- Blockings (e.g. Matsueda et al.)
 →less frequent
- Extratropical Cyclones (e.g. Mizuta et al.)

Setup of time-slice experiments

- Present-day climate experiment (1979-2003): AMIP-type
 - observed SST and sea-ice concentration
 - observed global-mean concentrations of CO2 and other GHGs
- Future climate experiment (2075-2099)
 - SST warming in the CMIP coupled models is added to the obs. SST
 - changing concentrations of GHGs following the emission scenario

Cluster analysis of ΔSST pattern of CMIP5 models

- SST ensemble experiments uses 3 clusters of warming pattern, in addition to the average of all models.
- 28 CMIP5 models, of which historical+RCP2.6/4.5/8.5 results are available, are used.
- Basically the same method as before

(Endo et al., 2013, JGR; Murakami et al., 2012, Clim. Dyn.)

- 1. For each model, a <u>mean future SST change</u> is computed by subtracting the 1979-2003 mean from the 2075-2099 mean.
- 2. The computed mean SST change is <u>normalized by the tropical mean</u> $(30^{\circ} \text{ S}-30^{\circ} \text{ N})$ SST change.
- 3. <u>Multi-model ensemble mean</u> of the normalized value is <u>subtracted</u> from that for each model.
- 4. The inter-model pattern correlation *r* of them are computed between all pairs of models.
- 5. Norms (or distances) are defined as $2 \times (1 r)$ for each model, and the <u>cluster analysis</u> is performed using these norms.
- 6. When the <u>final three groups</u> are bounded, the clustering procedure is terminated.

CMIP5 normalized SST change (RCP8.5-historical)

-1 0 1 2 2 2 3 4 5 6 7

GFDL-CM3

MPI-ESM-LR

CESM1-WACCM

FIO-ESM

MIROC5

bcc-csm1-1

601

MIROC-ESM

NorESM1-M

130 MIROC-ESM-CHEM

NorESM1-ME

Cluster analysis results

Cluster analysis of CMIP5 RCP8.5 SST

Mizuta et al. (2014)

Composite of precipitation anomalies

Mizuta et al. (2014)

Ensemble projections by AGCMs

- Present-day climate experiment (1979-2003): AMIP-type
 - observed SST and sea-ice concentration
- Future climate experiment (2075-2099)
 - SST warming in the CMIP coupled models is added to the observed SST
- 20-km mesh AGCM: 1 projection
- 60-km mesh AGCMs: 3 physics × 4 SST (× 2 initial
 - **3** different physics:
 - Yoshimura (YS) Arakawa-Schubert (AS) Kain-Fritsch (KF) cumulus schemes
 - ✓ 4 different SST anomalies:

Uncertainty in monsoon precipitation changes

 $\Delta SST(4) \times cumulus(3) \times initials(2)$

- $S = S_a + S_b + S_{ab} + S_e$
 - S: total variance
 - Sa: SST
 - Sb: cumulus scheme
 - Sab: cross (a and b) variance
 - Se: internal variability
- East Asia: Precipitation change ratio is largest and uncertainty is smallest
- South Asia, South America, South Africa: Cumulus scheme is responsible for inter-model variability
- North America, Australia and Maritime Continent: SST is responsible for inter-model variability

Global 60-km model ensemble

 Δ SST(4) × cumulus(3) × initials(2)

Uncertainty analysis

on uncertainty becomes larger

Precipitation change: MRI-60km vs CMIP5

- MRI-AGCM3.2H: 12 member SST & physics ensemble CMIP5: 28 models
- Normalized by global annual mean SAT change
- Hatch: sign agreement more than 66% (90%) models

General pattern agree each other > large SST increase = precipitation increase Not agree over the western North Pacific

2km Regional Model

5km Regional Model

Further downscaling with RCN

32

24

20 km Global Model

17 Sep 208X 20 UTC

5km Regional Model

2km Regional Model

05 Sep 208X 00 UTC

© MRI, JMA, JAMSTEC, MEXT

High-resolution AGCM-RCM experiments

1: KAKUSHIN Program (2007-2011) + SOUSEI Program (2012-2016)

AGCM 20km + RCM 5km (+ RCM 2km with urban model) 1 ensemble, SRES A1B 4 ensemble (SST), RCP8.5

2: JMA Global Warming Projection Volume 8 (2013)

AGCM 20km + RCM 15km + RCM 5km 1 ensemble, SRES A1B

3: MoE Climate Projections for Adaptation (2014)

AGCM 60km + RCM 20km 18 ensemble (SST, RCP, cumulus)

20kmAGCM

Matrix of ensemble experiments Global 60km (MRI-AGCM3.2H) + Regional 20km (NHRCM)

Summary

- Bias correction for GCM is a must for dynamical downscaling.
- Global high-resolution time-slice experiment is one of good choices for downscaling by avoiding SST bias in the present climate.
 - Good performance in the present-day AMIP
 - Observed present SST + CMIP5 ensemble mean future DSST
 - Done or being done by MRI 20km, HiRAM 25km and CAM5 30km
- As the model is global, projected data are available anywhere in the world.
- Further downscaling with a few km cloud-resolving RCM can also be applied to any region to investigate local extreme weather events such as heat waves from foehn and heavy rainfall.

予備スライド

MRI's CMIP6 Plan

Models: MRI-ESM1.x, MRI-AGCM3.xS, (NHRCM) Infrastructure:

Fujitsu 1.2 Pflops at MRI (Mar. 2015~) approx. 25% for CMIP6 # of years of experiments:

20,000 years (MRI-ESM1.x)

200 years (MRI-AGCM3.xS)

MIPs to contribute to:

• Planning:

AeroChemMIP, C4MIP, CFMIP, DAMIP, DCPP HighResMIP, OCMIP6, PMIP, VolMIP, (CORDEX)

 Under consideration: GeoMIP, (GDDEX), GMMIP, LS3MIP ScenarioMIP

Meteorological Research Institute Earth System Model ver. 1

MRI-ESM1.x for CMIP6

	CMIP5	CMIP6
Model Name	MRI-CGCM3 MRI-ESM1	MRI-ESM1.x
Atmos. Horiz. res.	T∟159 (≈120 km)	\leftarrow
Atmos. Vert. res.	L48, Top=0.01hPa	L80, 41 (>100hPa), 39 (<100hPa) Top=0.01hPa
Ocean Horiz. res.	1° × 0.5° (Tripolar grid)	\leftarrow
Ocean Vert. res.	L51	(
Atmos. chem.	Aerosols (MRI-CGCM3) All (MRI-ESM1)	All (tropo. & storato., incl. volc. aer.)
Biogeochem.	Yes (MRI-ESM1)	Yes (depends on the experiment)

Many improvements

Stratospheric QBO

Increased vertical layers and introduction of non-orographic GWD (Hines-scheme)

Low clouds

CTE-EIS stratocumulus parameterization, vertical layers, cloud physics, etc.

- Asian summer monsoon
- Sea ice distribution in the winter North Atlantic

Asian Summer Monsoon Precipitation

Precipitation JJA mean

CMAP (1987-1996)

CMIP5 esmHistorical (1987-1996)

MRI-ESM1.x Test (1987-1996)

10日程度までの時間スケールの大気海洋相互作用を取り入れる。

ター:hPa)、海面水温SST(陰影:℃)および80m深水温(白コン ター:℃)

台風の最大風速-海面気圧の関係 準結合実験(14i1)と大気モデル実験(HPA)

準結合実験(14i1)では、大気モデル実験(HPA)に比べて、熱帯低気圧の強さが弱くなっていることが確かめられた。 H. Murakami

 \rightarrow Multiple updrafts with different heights are represented.

Northern Hemisphere wintertime blocking

0.1

0.05 0 -0.05

-0.1

6ÓW

Frequencies of Euro-Atlantic and Pacific blockings are projected to decrease

Matsueda et al. (2009) JGR

120W

Future-Present

Longitude

6ÒE

120E

180