

High-resolution CAM5 simulations of current and future climate

Kevin A. Reed Stony Brook University - NCAR

Julio Bacmeister, Cecile Hannay, Peter Lauritzen & John Truesdale NCAR

> Michael Wehner DOE-LBNL

Jan. 19, 2015

Background

- There is a large effort at National Center for Atmospheric Research and Dept. of Energy to develop a next-generation, high-resolution Community Atmosphere Model (CAM)
- Targeting horizontal resolution of ~25 km globally.
- Focus for this talk:
 - General precipitation analysis with various high-resolution CAM5 versions simulations.
 - More detailed discussion of tropical cyclones (TCs) and the impact of model design choices.
 - Future climate simulations.
 - Call for earlier evaluation, using reduced complexity testbeds, of highresolution model's ability to simulate extremes.

Design of Experiments

- National Center for Atmospheric Research's (NCAR) Community Atmosphere Model version 5 (CAM 5).
- The default Spectral Element SE dynamical core with 30 vertical levels is used at the horizontal resolution of ne120 (~25 km) with ne30 (~100 km) run for comparison.
- This is comparable to previous DOE-LBNL CAM5-FV 0.23°x0.31° run.
- Full Atmospheric Model Intercomparison Project (AMIP) protocols for 1980-2005.
- Prescribed observed SSTs, ozone, CO₂, solar forcing, etc.
- GFDL tracking code is used for calculating all TC tracks.

Precipitation

Resolution Improvement

Jan. 19, 2015

Resolution Improvement

Problems persist at higher resolution (despite some improvements) !

Regional

1 degree

West Africa - JJA

Precipitation simulation improves over W Africa as resolution increases from 1° (100km) to 0.25° (25km)

Increase in rainfall at 0.25° is associated with stronger westward moving disturbances

8.00

7 00

6 00

3.00

Regional

1 degree

9.0

7.0

6.0

5.0

0.2

North America - JJA

But No improvement in summer precipitation in central US at 0.25°

Nocturnal maximum still completely missing

Jan. 19, 2015

"Corridor" Event

Nocturnal precipitation (8PM-8AM LST) July 23-31 1998

- Exit region of strong lowlevel jet
- Anomalous shear sfc-~2 5 km → Westerlies at 600
 hPa
- Shallow stationary surface front to the south
- 68% of MCSs 1998-2002 associated with corridors

[Trier et al. 2014, JAS]

Investigate MSCs

Why can't CAM simulate midwest precipitation? •Insufficient resolution?

Physics errors?

Jan. 19, 2015

"Corridor" Event

Jan. 19, 2015

Diurnal Cycle

Midwest Precip

Jan. 19, 2015

Midwest Precip

Difference is contribution from deep+shallow convection schemes

Jan. 19, 2015

Midwest Precip

Difference is contribution from deep+shallow convection schemes

Brief Recap

- Not everything is improved with resolution... surprise!
- Large-scale precipitation has approximately correct diurnal cycle, but parameterized convection is always nearly 180° out of phase.
- "Extreme" 1998 corridor event is reasonably well captured even at 25km.
- Parameterized convection plays a surprisingly large role in 6km simulations.

Tropical Cyclones

Tropical Cyclones

- National Center for Atmospheric Research and Dept. of Energy supported CAM has shown some "skill" in simulating extreme weather events, especially at higher horizontal resolutions (~25 km).
- This was shown with idealized tests of TCs in previous versions of CAM and as well as decadal simulations with CAM5.
- However, there is still much room for improvement as there exist biases in intensity, track duration, regions of formation, etc.
- In addition, there is uncertainty in the tuning of the model at these high horizontal resolutions and its impact on extremes.

Idealized Simulations

Jan. 19, 2015

Intercomparison: Physical Realism

Total Precipitation Rate FV Simulation (0.125° ≈ 14 km)

Radar Image of Hurricane Rita (2005)

Jan. 19, 2015

Radar image courtesy of NWS

Wind Speed for 0.25° by 0.25° Simulation

Wind Speed for 0.25° by 0.25° Simulation

Jan. 19, 2015

[Reed & Jablonowski 2011, JAMES]

CAM 4 / CAM 5 Comparison

Assess initial data and model uncertainties

Jan. 19, 2015

CAM5-FV 0.9° by 1.25° Storm Tracks - AMIP

CAM5-FV 0.23° by 0.31° Storm Tracks - AMIP

Observations

Dynamical Core Impact?

CAM5-SE Comparison: Previous CAM5-FV

Jan. 19, 2015

[Reed et al. 2015, in prep.]

Intensity Comparison

Think Back To Test Case

Minimum surface pressure, resolution dependence

[Reed et al. 2012, ASL]

Jan. 19, 2015

Jan. 19, 2015

D

Future Climate Simulations

Design of Experiments

- National Center for Atmospheric Research's (NCAR) Community Atmosphere Model version 5 (CAM 5).
- The default Spectral Element SE dynamical core with 30 vertical levels is used at the horizontal resolution of ne120 (~25 km).
- Time-slice RCP 4.5 and RCP 8.5 scenarios for 2070-2089.
- Prescribed observed SSTs, ozone, CO₂, solar forcing, etc.
- GFDL tracking code is used for calculating all TC tracks.

Precipitation

FAMIPC5_ne120_79to05_03_omp2 Global Mean=3.21

Jan. 19, 2015

Extreme Precipitation – 25 km

Extreme precipitation is more intense in a warmer climate

Jan. 19, 2015

Future Climate Scenarios: Global Statistics

Jan. 19, 2015

Future Climate Scenarios: Changes in Track Density

Difference From AMIP

Jan. 19, 2015

Future Climate Scenarios: Intensity Distribution

Future Climate Scenarios: Regional Differences

North Atlantic

Final Thoughts

- The impact of the dynamical core on tropical cyclone statistics for the decadal experiments is significant. Needs to be explored more!
- The high-resolution CAM5-SE produces less tropical storms and hurricane per year than observed from 1980-2005 and more than that seen in the previous CAM5-FV AMIP simulation.
- As the climate warms the number of tropical cyclones decreases in CAM5-SE. However, the most intense storms become more intense.
- Need to focus on understanding some of the regional and intensity biases that exist in CAM5-SE.

Reduced Complexity Testbeds

How do we evaluate GCMs?

Utilize a test hierarchy

Jan. 19, 2015

[Reed & Jablonowski 2012, JAMES]

Jan. 19, 2015

Simple-Physics Dynamical Core Comparison

Jan. 19, 2015

[Reed & Jablonowski 2012, JAMES]

The Dynamical Core Model Intercomparison Project (DCMIP)

Simple-physics

Wind Speed (m/s) At Day 10

For equivalent 0.5° resolution w/ 30 levels

47

Jan. 19, 2015

The Dynamical Core Model Intercomparison Project (DCMIP)

50

60

70

80

40

Wind Speed (m/s)

0

10

20

30

Jan. 19, 2015

48

Full model

physics

Wind Speed (m/s)

At Day 10

For equivalent 0.5°

resolution w/

30 levels

Non-rotating RCE World: Resolution Sensitivity

6-hr Avg. Precipitation (mm/day)

Design of Experiments

- NCAR's Community Atmosphere Model version 5.3 (CAM 5.3).
- The SE dynamical core with 30 vertical levels is used at the horizontal resolutions of:
 - ne=30 (~100 km)
 - ne=120 (~25 km)
- Full physics in Aquaplanet mode is used, with a simplified ocean covered Earth and constant SST of 29° C.
- No rotation effects or spatially uniform rotation effects.
- Diurnally varying, spatially uniform insolation (~340 W/m²).
- No direct and indirect effects of aerosols.
 - Tuning parameters are set to ne=30 configuration for all simulations.

Non-rotating RCE World: Precip Extremes

Jan. 19, 2015

[3 mm/day bins]

Uniformly rotating RCE World

6-hr Avg. Precipitation (mm/day)

[Corilois set to 10 deg. N]

Summary

- The impact of the dynamical core on tropical cyclone statistics for the decadal experiments is significant.
- Not all biases are improved with resolution.
- Plan to run ensemble simulations (approx. 4) for the AMIP and RCP scenarios, as well as use different techniques for the prescribed SSTs in the RCP scenarios.
- Reduced complexity testbeds can provide an opportunity to evalutate next-generation models earlier on in development.

Thanks!

contact: kevin.a.reed@stonybrook.edu

Jan. 19, 2015

Extra: Aerosol Model Impact

Extra: Aerosol Model Impact

Jan. 19, 2015

Uniformly rotating RCE World

ne30:

- Avg. Count = 10.9
- Avg. Max. Wind = 34.7 m/s
- Avg. Min. PS = 967 hPa

ne120:

- Avg. Count = 13.6
- Avg. Max. Wind = 40.9 m/s
 - Avg. Min. PS = 961. hPa

Jan. 19, 2015