Workshop on High-Resolution Climate Simulation, Projection and Application 19-21 January 2015, Taipei

Comparison of tropical cyclones simulated by high-resolution MRI-AGCMs and NICAM

Masato Sugi^{1*}, Hiroyuki Murakami^{1,2}, Kohei Yoshida¹ and Yohei Yamada³

1 Meteorological Research Institute, Japan 2 Geophysical Fluid Dynamics Laboratory, USA 3 Japan Agency for Marine-Earth Science and Technology, Japan

* msugi@mri-jma.go.jp

Outline

- 1. Introduction
- 2. Tropical cyclones simulated by high-resolution MRI-AGCMs and NICAM
- 3. Cumulus parameterization for high-resolution AGCM
- 4. Ensemble high-resolution AGCM simulations5. Summary

1. Introduction

History of TC simulation with high resolution AGCMs in Japan

year	model	resolution	integration	computer	speed	reference
1992-1996	JMA-GSM	T106 (120km)	10 year	CRAY-YMP	1 G Flops	Sugi et al. (2002)
2002-2007	MRI/JMA-AGCM	TL959 (20km)	10 year	Earth Simulator	40 T Flops	Oouchi et al. (2006)
2007-2012	MRI-AGCM 3.1,3.2	TL959 (20km)	25 year	ES2	130T Flops	Murakami et al. (2012)
2012-2016	NICAM	GL9 (14km)	30 year	К	10 P Flops	Yamada et al. (2015)

First TC simulation with a "high-resolution" AGCM

Sugi et al. (2002) JMSJ

TC simulation with a high-resolution AGCM on the Earth Simulator

2. Tropical cyclones simulated by high-resolution MRI-AGCMs and NICAM

2007-2012	MRI-AGCM 3.1,3.2	TL959 (20km)	25 year	ES2	130 TFlops	Murakami et al. (2012)	
2012-2016	NICAM	<mark>GL9 (14k</mark> m)	30 year	К	10 PFlops	Yamada et al. (2015)	
Model		Cumulu	us Parametriz	zation Scher	ne		
	MRI-AGCM3.	1 Arakawa	Arakawa-Schubert scheme (AS)				
MRI-AGCM3.2 NICAM		2 Yoshimu	Yoshimura scheme (YS)				
		No para	metrization				

TC Lifetime Maximum Wind Speed

NICAM

Yamada et al.(2015)

NICAM GL9 (14km)

TC Lifetime Maximum Wind Speed

TC wind-pressure relation

MRI-AGCM

Murakami et al. (2012) JCLI

NICAM

Yoshida 2013 and Yamada 2013

3. Cumulus parametrization for high-resolution AGCM

Gray Zone Problem

For the models with resolution of 20km - 2km, conventional cumulus parametrization scheme does not work well, while explicit cumulus convection is also problematic.

We selected 20km resolution for the Earth Simulator experiment instead of 10km resolution to avoid gray zone problem.

Cumulus convection is a subgrid scale phenomenon in gray zone. Therefore, parameterization is necessary.

Arakawa et al. (2011) ACP

Tropical cyclone genesis/development

4. Ensemble high-resolution AGCM simulations of tropical cyclones

Recent IPCC report concluded that the number of very intense TCs will increase globally in the future.

However, it is noted that there are very large uncertainties, particularly in the projection of the regional changes in the frequency of very intense TCs.

Figure 14.17

IPCC-AR5 (2013)

High-resolution MRI-AGCM Ensemble Experiments

3

1

1

1

Member

3

3

3

1

1

HadISST

HadISST

HadISST

HadISST

Present Day Experiment (11 member)							
Model	Resolution	Convection	Initial Condition	SST			
HP0A	60km	AS	3	HadISST			

. \ Ι.

YS

YS, KF, AS

AS

YS

HPA

HPA

SPOA

SPA

60km

60km

20km

20km

Global	War	ming	xperiment	(29)	men	nber	•)
--------	-----	------	-----------	------	-----	------	----

Model	Resolution	Convection	Initial Condition	SSTA	Member
HF0A	60km	AS	3	CMIP3	3
HF0A	60km	AS	3	CSIRO	3
HF0A	60km	AS	3	MIROC	3
HF0A	60km	AS	3	MRI	3
HFA	60km	YS	3	CMIP3	3
HFA	60km	YS	1	Cluster 0-3	4
HFA	60km	KF	1	Cluster 0-3	4
HFA	60km	AS	1	Cluster 0-3	4
SFOA	20km	AS	1	CMIP3	1
SFA	20km	YS	1	CMIP3	1

TC intensity bias correction

Bias correction is based on CDFs for each ocean basin and each 5 degree latitude belt. Result of bias correction for 60kmAGCM3.2H is shown below.

Result of intensity bias correction (TC track with intensity)

Category 4-5 TC Frequency Changes

Numbers per 10years in 5°x5° grid box

Number of Cat 4-5 TCs generally increases in most regions, except for south-western part of WNP and near Australia, and ENP, Caribbean Sea and Gulf of Mexico.

Sugi and Murakami (2015)

Summary

1. Cumulus parameterization

Simulation of TC by high-resolution AGCM significantly depends on the cumulus parameterization. We need to develop a good parameterization for gray zone. Q1, Q2 and entrainment should be re-examined.

2. Ensemble experiment

For TC climate study, not only high spatial resolution but also high statistical resolution is important. We have demonstrated that ensemble experiment with TC intensity bias correction is very useful to improve the statistical resolution.