Global Modeling of Tropical Cyclone Activities and
Response to 215t Century Warming Using
a 50km Resolution GFDL HIRAM

Ming Zhao
(GFDL/UCAR)

Jan 19-21, 2015, Taipei
Worlishop on High-Resolution Climate
Simulation, Projection, and Application

with Isaac Held, Shiann-Jiann Lin, and Gabriel Vecchi



How may tropical cyclones respond to warming?

Knutson et. al 2010 (Nat. Geosci., WMO assessment)

Examples of most recent studies based on CMIP5:

Knutson et. al 2013 (J. Climate) — dynamical downscaling 8
Camargo 2013 (J. Climate) — explicit simulation and GPi/Pl [
Emanuel 2013 (PNAS) - simplified dynamical downscaling
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' using a high resolution GCM. Resolution is a
key, although not the only key!




Challenges in modeling the TC-climate connections
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HIRAM simulated global hurricane climatology, seasonal cycle,
inter-annual variability, and decadal trends (Zhao et. al 2009)
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HIRAM performs well in the GCMs participating in the US CLIVAR
Hurricane Working Group (Figure: for TC track density)

Model resolutions range
from 28km to 130km

Shaevitz et. al (2014
JAMES) conclude:
“Overall the models were
able to reproduce the
geographic distribution of
TC track density in the
observations, with the
HIRAM, in particular,
demonstrating the most
similarity to
observations.”
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HIRAM performs well in the GCMs participating in the US CLIVAR
Hurricane Working Group (Figure: seasonal cycle of TC frequency
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Animation of various dynamical and thermo-dynamical
fields following a single TC simulated in a 50km HIRAM
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TC size and precipitation statistics in a 50km HIRAM

Radial distribution of tangential wind Radial distribution of precipitation
25 ‘ 300

— NATL

—EPAC 2501

— WPAC|

[~
o

—_
o

10 m tangential wind (m/s)
o

N
o
o

—
[
o

precipitation (mm/day)
o
o

—NATL

50" ——EPAC |
— WPAC
5 | | | |\ 0 | | 7
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Radius (km) Radius (km)

Fields averaged over all simulated TCs for the N. Atlantic, E. Pacific

and

W. Pacific basins. Model captures the geographical distribution

of TC size and precipitation.



TC-associated cloud radiative effect in 50km HIRAM
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Key aspects of the HIRAM for realistic TC simulation

» Advanced finite volume cube-sphere dynamical core
» Less-intrusive convection scheme

- better simulations of mean climate state and easterly waves
- participating in IPCC AR5 high-res simulation

Why non-intrusive convection parameterization?

= More systematic avenue towards consistency and convergence as
model resolution becomes finer.

= More realistic representation of organized convective system.

= More realistic representation of cloud precipitation microphysics.

= Enhanced tropical transient activity and tropical cyclones.

= Avoid many artifacts in deep convective parameterization.

= One can obtain a high quality simulation with such a scheme in an
AGCM forced by observed SSTs.
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Global annual TC count

Sensitivity of global TC frequency to cumulus entrainment
rate and divergence damping parameters

Increasing cumulus mixing Increasing divergence damping
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Intensity issue and a statistical adjustment approach

Cumulative frequency distribution
F(l)=NP(I)
oF (1)~ P(I)ON + NoP (1)

A match for model and observed

storm life-time maximum wind
speed based on equal probability

The derived maximum wind speed
relationship is approximately
bi-linear

Lo =1+ Aoy =17 )s Loy < Iy

]ﬁt =1+ e — 17 )i Lgen > Iy
a=122;=3.151.=34m/s

Zhao and Held 2010, J. Climate
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The simple statistical adjustment allows the model to
capture variability of Atlantic major hurricanes

La Nina minus El Nino

difference in annual count
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Projections for future TC frequency

Future projections using a time slice method

ON SGHG + ON 5 SST + ON SRSST
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Global TC frequency response to uniform 2 degree SST
warming and doubling of atmospheric CO2 concentration

fractional change in annual TC count
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Fractional changes in global TC frequency

S
o

Global TC frequency response to 2K SST warming and CO2
doubling from the US CLIVAR HWG models

Changes in global TC frequency

o
U1

B P2K
_ |2xC02
B BOTH
0 1- * e
T . ‘ 1
" L
L
| \ | | \ | |
HIRAM C180AM2 ECHAMS GFS CAM5 GEOS5 COAPS

Zhao et. al 2013, CLIVAR newsletter



Mid-tropospheric convective mass flux best explains the
simulated TC frequency response for most HWG models

Zhao et. al 2013,
CLIVAR newsletter

fractional change in TC count

An index for
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Mechanisms for global mean reduction

Future projections

N =N s6HG + 2V 5GSST + = O SRSST (x,))
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OM , is non-uniform, monsoonal-like response may be important,
significant precipitation move from ocean to land for 2xCO2 case and
opposite for the +2K case, causing more uncertainty across models

Zhao et. al 2013, CLIVAR newsletter



Regional TC frequency response to coupled model
projected 215t century warming

Key points:

= Quantify the uncertainty due to

spatial pattern of SS
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HiRAM simulated hurricane frequency response to 215t
century warming projected by IPCC AR4 coupled models
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For each basin, there is large inter-model spread in the magnitude and
even the sign of the hurricane frequency response. The differences are
entirely due to the different SST projections. (zhao and Held, 2012, J. Climate)



Indices of SSTs and atmospheric properties relevant
to hurricane genesis frequency

SSTs == atmospheric properties == hurricanes

RSST (m,x,y): relative SST =local — tropical mean SST
RSST (m,x,y)G(m, x,
RSST (x,7) = 2 ( V)G ( y)
Y., G(m, x,y)

m

G(m,x,y): climatological storm genesis frequency from the
control simulation.m=1-12, x=lon, y=lat

monthly data used for calculating indices

mid-troposphere vertical velocity

@5y (M, x,V):
5 y 4 (Zhao and Held, J. Climate 2012)
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Most inter-model variation can be explained by the simple
relative SST index in the N. Atlantic, E. Pacific and S. Indian
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Mid-tropospheric vertical velocity is skillful in explaining
the simulated hurricane response for all basins
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The eastward migration of TC genesis frequency can be
explained by changes in mid-troposphere vertical velocity
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Summary

A 50km HiRAM forced by the observed SSTs appears to realistically
simulate many aspects of TC frequency variability. The advanced
dynamical core and convection representation are key toward the
success. The results further suggest:

= decoupling between simulations of TC frequency and intensity
= strong relationship between SST and TC frequency variability
= justifying time-slice method for studying future change in TC frequency

For future TC change, it is useful to decompose total response into 3
components: changes due to 1) GHG increase, 2) global mean SST
increase, 3) changes in spatial pattern of SSTs. Results suggest:

= Robust reduction in global mean frequncy to GHG increase

= Less robust reduction in global TC count to global mean SST warming

= Large uncertainties at basin scale due to different SST pattern change.

All 3 aspects of the response suggest the importance of changes in
large-scale convective overturning motion in predicting TC responses.
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HIRAM performs well in the GCMs participating in the US CLIVAR
Hurricane Working Group (Figure: TC genesis density)
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