

Impact of Climate Change on Water Resources

Kenji Tanaka

Water Resources Research Center Disaster Prevention Research Institute Kyoto University, Japan

Climate Change Impacts on Water Resources Team (a)

Important Collaboration between sub-Group

Contents

1. Projection of Future Change in Aridity Index & Evaporation Ratio

Global, land surface model climate change tendency (positive, negative)

2. Projection of Future Change in Available Water Resources in Japan Japan, Integrated model river discharge, water stress, snow adaptation strategy for rice production

Background 1 (evapotranspiration)

Annual evapotranspiration approaches annual precipitation in arid and semi-arid regions where the available energy greatly exceeds the amount required to evaporate annual precipitation.

Evapotranspiration is a key information for water management in the region where available water resources are limited.

Aridity Index <pre>Energy balance</pre> <pre> Rnet LP </pre>	5 < AI < 12 Arid 2 < AI < 5 Semi Arid 0.75 < AI < 2 Sub Humid 0.375 < AI < 0.75 Humid (Ponce et al. 2000)
Evaporation Ratio	Rnet: annual mean net radiation P : annual precipitation L : latent heat of vaporization E : annual evapotranspiration

© MRI, JMA, JAMSTEC, MEX

Ct)

The climate change signals for AI and ER are generally same.

(Ex.) Atacama desert, Sahara desert, Namib desert, Arabian Peninsula, and Australia.

Some regions have negative impact on AI and positive impact on ER. (Ex.) California, Tibetan Plateau, and Gobi desert,

Tanaka, K.

Negative impact on AI is basically consequence of the increased precipitation.

901

-1.50.5 1.5

Positive impact on ER can be explained by the decreased snowcovered period.

0.15

0.2

0.25

501 10N Snow 205 30S Cover 40S 505 120E 120% BÓB

-0

-4.5-3.5 3.5

Some Close-up images for Taiwan

Summary (part 1)

- Future projection of change in Aridity Index (AI) and Evaporation Ratio (ER) using super high-resolution global climate model and land surface model with 20km resolution.
 - + present climate (1979-2003)
 - + future climate (2075-2099)
- In general, AI and ER show same climate change tendency Atacama desert, Sahara desert, Namib desert, Arabian Peninsula, Australia
- In some region, AI and ER show opposite climate change tendency California, Tibetan Plateau, Gobi desert
 - + Negative impact on AI : increased precipitation
 - + Positive impact on ER: decreased snow-covered period

Tanaka, K.

Percentage of water withdrawal by each sector (AQUASTAT)

	Agricultural	Municipal	Industrial			
Canada	11.77	19.56	68.67			
USA	41.49	13.48	45.03			
Italy	45.00	18.19	36.71			
Japan	62.45	19.68	17.87			
France	9.81	15.72	74.47			
Russia	19.94	20.24	59.82			
Germany	2.94	14.94	82.12			
UK	2.94	21.70	75.36			

Most of the agricultural water use in Japan is for rice paddy field

Land surface model SiBUC paddy field model

optimal crop growth

Tanaka, K.

Tanaka, K.

Snow depth validation (1991-2008 average)

Oct

Nov Dec

Jan Feb Mar Apr May Jun

Date

Snow Depth (cm) (9. Sapporo)

Snow Depth (cm) (40. Toyooka)

Tanaka, K.

□1231 dams (more than one million m³)

- Flood protection dam
- Water utilization dam
- Multi purpose dam (FP and WU)

Dynamic coupling with river routing model

Catchment area of all dams more than one million m³

Discharge

20 first rank rivers 1994-2003年(SDP, AMeDAS)
 Correction of raingauge under-catch rate

No.	River	Station	Budget[%]	Nash		No.	River	Station	Budget[%]	Nash
1	Teshio	Maruyama	-8.7	0.436	-	11	Tone	Kurihashi	+12.7	0.873
2	Ishikari	Ishikari	+13.5	0.117		12	Naka	Noguchi	-8.7	0.842
3	Tokachi	Moiwa	-2.0	0.855		13	Fuji	Kitamatsuno	+59.1	0.619
4	Mogami	Sagoshi	-10.0	0.849		14	Tenryu	Kashima	+0.4	0.873
5	Omono	Tsubakigawa	-11.2	0.847		15	Kiso	Inuyama	+0.3	0.911
6	Kitakami	Tome	-14.6	0.812		16	Katsura	Katsura	+9.0	0.734
7	Yoneshiro	Futatsui	-13.3	0.868		17	Kizu	Yawata	-22.3	0.782
8	Abukuma	Tateyama	-13.7	0.843		18	Gono	Kawahira	-20.2	0.660
9	Shinano	Ojiya	-18.2	0.726		19	Yoshino	Ikeda	+10.6	0.871
10	Agano	Maoroshi	-14.2	0.783	_	20	Chikugo	Senoshita	-14.9	0.940

Water stress analysis

Water Stress

■Water stress for each river basin (16,000 rivers)

Water demand from each sector

- agriculture: irrigation model (SiBUC)
- industrial and domestic:

National Land Numerical Information Download Service Report of Japanese Water Resources in 2011 (MLIT)

Total water demand

Water Stress Index

Water withdrawal to total runoff

$$WWR = \sum W_i / \sum Q_i$$

Raskin, 1997 ³⁰ W: daily water withdrawal [MCM] ³⁰ Q: daily discharge [MCM]

⇒annual water stress

210° 240 270 300 330 120 150° 180 60 30 -30' Oki et al. (2001) -60 0.000 0.001 0.010 0.100 0.200 0.400 0.600 0.800 1.000

Cumulative withdrawal to demand ratio

$$CWD = \sum (W_i / D_i)$$

Hanasaki (*HESS*, 2008) *D:* daily demand [MCM]

⇒seasonal water stress

Climate change projected by MRI-AGCM3.2S

Tanaka, K.

Bias detection/correction for each river basin

1	Teshio	天塩川	35	Yahagi	矢作川
2	Shokotsu	渚滑川	36	Kiso	木曽川
3	Tokoro	常呂川	37	Nagara	長良川
4	Abashiri	網走川	38	Yodo	淀川
5	Ishikari	石狩川	39	Yura	由良川
6	Shiribetsu	尻別川	40	Kako	加古川
7	Shiribeshi	後志利別川	41	Kino	紀の川
8	Saru	沙流川	42	Kumano	熊野川
9	Kushiro	釧路川	43	Kuzuryu	九頭竜川
10	Tokachi	十勝川	44	Sendai(Chu)	千代川
11	Iwaki	岩木川	45	Hii	斐伊川
12	Takase	高瀬川	46	Gouno	江の川
13	Mabechi	馬淵川	47	<u>Tak</u> atsu	高津川
14	Kitakami	北上川	48	Yoshii	吉井川
15	Abukuma	阿武隈川	49	Takahashi	高梁川
16	Yoneshiro	米代川	50	Oota	太田川
17	Omono	雄物川	51	Saba	佐波川
18	Mogami	最上川	52	Yoshino	吉野川
19	Kuji	久慈川	53	Naka(Shikoku)	那賀川
20	Naka(Kantou)	那珂川	54	Toki	土器川
21	Tone	利根川	55	Shigenobu	重信川
22	Ara(Kantou)	荒川	56	Hiji	肱川
23	Tsurumi	鶴見川	57	Niyodo	仁淀川
24	Sagami	相模川	58	Shimanto	四万十川
25	Ara(Hokuriku)	<u> 荒川</u>	59	Chikugo	筑後川
26	Agano	<u>阿賀野川</u>	60	Matsuura	松浦川
27	Shinano	信濃川	61	Kase	嘉瀬川
28	Seki	<u>関川</u>	62	Kikuchi	菊池川
29	Hime	姫川	63	Kuma	球磨川
30	Jintsu	神通川	64	Gokase	五ヶ瀬川
31	Oyabe	小矢部川	65	Omaru	小丸川
32	Fuji	富士川	66	Ooyodo	大淀川
33	Tenryu	天竜川	67	Sendai(Kyu)	川内川
34	Тоуо	豊川	68	Kimotsuki	肝属川

Model bias of MRI20kmGCM (river basin) Precipitation Air temperature

Tanaka, K.

Impact on available water resources and water stress

Accelerated hydrological cycle, reduction of snowfall In spite of the increase in available water resources, water stress will increase in Tohoku region

Reduction of snowmelt runoff in spring to summer

 \rightarrow difficult to meet the water demand for rice field

How adaptation strategy affects on water stress? (change the agricultural water demand period)

Tanaka, K.

Summary (part 2)

- Integrated water resources model in Japan
 Dynamic coupling of hydrological cycle and agricultural activity
 - □Validation of rice yield, Snowdep, river discharge
- 2. Estimating the climate change impact
 Change in flow rate, water stress, rice yield
 Evaluate the adaptation strategy (planting date)
 Adaptation strategy should be proposed
 considering both rice yield and water stress

Thank you so much! 謝々!

Ski resort in Nagano Prefecture

and " of Start