

Where I'm going

- A little background on Australia, CSIRO and the Climate Adaptation Flagship
 - Our mission: to have our research used!
- Beyond 2°C: from mitigation to adaptation
 - Focusing on adaptation decision-making in response to climate projections
- Some case studies
 - Towards appropriate delivery of climate information

CSIRO National Research Flagships

BIOSECURITY

CLIMATE ADAPTATION

DIGITAL PRODUCTIVITY AND SERVICES

ENERGY TRANSFORMED

FOOD FUTURES

FUTURE MANUFACTURING

MINERALS DOWN UNDER

PREVENTATIVE HEALTH

SUSTAINABLE AGRICULTURE

WATER FOR A HEALTHY COUNTRY

WEALTH FROM OCEANS

National Research Flagships

BIOSECURIT

CLIMATE ADAPTATION

DIGITAL PRODUCTIVITY **ENERGY** AND SERVICES

TRANSFORMED

FOOD FUTURES

FUTURE **MANUFACTURING**

MINERALS DOWN **UNDER**

PREVENTATIVE **HEALTH**

SUSTAINABLE AGRICULTURE

WATER FOR A **HEALTHY COUNTRY** **WEALTH FROM OCEANS**

Climate Adaptation Flagship Goal

To equip policy makers, industries and communities with practical and effective adaptation options to climate change and variability and, in doing so, create in the national interest \$3 billion per annum in net benefits by 2030.

Research strategy delivers to sectoral clients

Pathways to Adaptation

Bryson Bates

~150 full time equivalents across ~300 staff members
Operating since 2008, now ~\$40m/y budget, ~35% external
(Water issues in *Water for Healthy Country Flagship*)

Adaptation science: 3 perspectives, all needed

Adaptation information and decision-making

Evaluation, adaptation pathways, future scenarios, risk management modes, etc

DECISIONS

Adaptive behaviours and institutions

Behaviours, incentives, barriers, adaptive capacity, vulnerabilities, etc Adaptation

BEHAVIOURS

OPTIONS

Adaptation options and technologies

Cultivars, materials, farming systems, urban planning, etc

Where I'm going

- A little background on Australia, CSIRO and the Climate Adaptation Flagship
 - Our mission: to have our research used!
- Beyond 2°C: from mitigation to adaptation
 - Focusing on adaptation decision-making in response to climate projections

Some case studies

IPCC 2007: 1.1-6.4°C – surely we'll keep to 2°C?

Australia: vulnerable among OECD nations

- (a) Qualitatively different levels of impact, vulnerabilities and adaptation needs at 4°C compared to 2°C
- (b) Proactive adaptation needed to plan for stabilising at 2°C are very different to those needed for 2°C heading for 4°C+

Could be disempowering...

IPCC (2007) (Fig.11.4: Australia)

Managing the risk from diverging possible futures

Transformational adaptation

Working towards adaptation planning

Getting past impacts, vulnerability and adaptive capacity assessments to adaptation decision pathways

- Not all decisions are the same
- Not all aspects of the future are equally uncertain
- How do we generalise?
- How do we evaluate?

Climate or decision-centred?? Exposure Sensitivity Adaptive Potential impact capacity Willows & Connell 2003 UKCIP 1 Identify problem and objectives **Vulnerability** 2 Establish decisionmaking criteria, **IPCC** receptors, exposure units and 8 Monitor 3 Assess risk 7 Implement decision 5 Appraise options 4 Identify options No Problem defined Yes Criteria met Make decision

Adaptation timing and priorities

Sea level rise: 1m within 2080-2170

Figure 2.10 Recent estimates of future sea-level rise relative to the 1990s. Source: German Advisory Council on Global Change 2009²⁴

Managing risk

Hallegatte (2009) Global Environmental Change 29: 240-7

- (i) selecting 'no-regret' strategies that yield benefits even in absence of climate change (e.g. better disaster preparedness, 'CAR' principles))
- (ii) favouring reversible and flexible options (e.g. real options, delaying development)
- (iii) buying 'safety margins' in new investments (e.g. heavier dam foundations)
- (iv) promoting soft adaptation strategies, including [a] long-term [perspective] (e.g. social networks, insurance, water demand reduction)
- (v) reducing decision time horizons (e.g. shorter lifetime buildings)

Dessai & van de Sluijs (2007)

11 frameworks for decision-making; 12 tools for assessing uncertainty

Ranger et al. (2010)

- 'Adaptation in the UK: a decision making process'
- Classify in terms of decision types and future change risks faced

Systematising responses

- 1. Short lifetime decisions
 - Mainly adapt incrementally, watch out for thresholds
- 2. Long lifetime decisions (where most risk falls to government)
 - 1. Monotonic, ~certain to occur, timing unsure
 - E.g. 2°C, 1m sea level rise, more hot periods, more extremes, more CO2
 Plan for these, look for no regrets actions, use precautionary principle
 - 2. Direction sure but extent unsure
 - E.g. drying SW Australia and reduced water flows, fire risk in many areas
 - Use risk management, 'soft adaptations' to delay expensive decisions (but prepare for these), 'real options' analysis
 - 3. Even direction of response unsure
 - Robust decision-making, risk hedging against alternative futures, etc.
- 3. And plan adaptation pathways, with critical decision-points
 - May include no action options, but deliberatively!

Flexible decision pathways: Thames Estuary

Towards adaptation planning decisions

1. Existing plans / goals 2. Brainstorm decision areas + key planning decisions outside existing plans [especially longer-term, and include review of goals]

General scenarios of future change (climate +)

- 3. Narrow to existing or new decisions that could interact with change over time
- 4. Identify climate-related factors for these decisions, and how these may change*

Key impacts information

- 5. Prioritise on basis of impacts studies
- *only do new climate scenarios work if there is a substantial & critical gap.
- 6. Identify adaptation options for each decision – omit [or upscale] those with no feasible options

climate (etc) info if necessary

Use more detailed 7. Analyse preferred adaptation options/pathways, with appropriate approaches to risk mitigation and stakeholder engagement

8. Adaptive learning cycle over time

Systematising a decision-centred approach...

Not all decisions are equal

Decision lifetimes really matter, for how decisions intersect with climate change

Not all threats are equal, nor equally uncertain

Some aspects of climate change are far more certain than others

There are many approaches to managing risk

Use what's appropriate to the form of climate and other uncertainty

Adaptation will not be a once-off action

Adaptation pathways, with review points, related to climate and other updates

Not all adaptations are worth doing

- Need to value them many values, sometimes contested...
- Many methods for choosing adaptation actions but need to suit the decision
- Don't just assess impacts and vulnerability more precisely!!

Some case studies...

- 1. Extreme winds and building standards
- 2. Coastal inundation and sea level rise
- 3. Conservation planning and species movements
- 4. National infrastructure impacts and adaptation
- 5. Adaptive capacity at all scales

1. Extreme winds

If extreme winds increase in eastern Australia...

- Currently projections are very uncertain
 - No change, increase in intensity, move further south??
- Does this make decision-making impossible?

- Collaboration with federal Department of Climate Change
 - (but not enough with the construction industry)

Areas Prone to Extre

Key attributes

- No regrets (value even if no climate change)
- Robust (value for all scenarios)
- Act early (rapid decline in value over time)
- Proactive collective action (else delay)

2070

2060

2040

Calendar Year to Implement Adaptation

2050

Packhampton

Brisbine

Offis Habour

Camberra

Vulnerable to extreme wind hazard, especially incestorif cyclones move south

2030

2020

2010

2. Coastal inundation / sea level rise

As sea-level rise increases...

- What are potential impacts?
- Should building be prevented near the sea?
 - Given short term benefits from living near sea, and diverse values in the community

 Collaboration with local governments in SEQ and NSW, and federal Department of Climate Change

Implications for infrastructure and settlements

Storm surges in South-east Queensland

1:100y storm surge event in SEQ

- Damage costs: now ~\$1.1bn
 - 226k people, 35k houses affected
- With population growth, sea level rise, current planning: by 2030 expect >\$2bn
 - 399k people, 62k houses affected
- (\$3.9bn by 2070)

Adaptation

 Banning new risky developments could cheaply save \$0.7bn/event; potential to adapt to save more

Importance of acting now

Coastal adaptation decision-making systems

4. National infrastructure assessment

Studies underway:

- What will be the exposure to future effects of fire, inland flooding, coastal inundation (and heatwaves and high winds) on infrastructure, given different future population distributions in Australia?
- What impacts may result and what adaptation responses are worth taking?
- Collaboration with federal Department of Climate Change, and Attorney General's Department (includes emergency management)

How we did it – inputs & outputs by geography

How we did it - exposure maps from projections

Key results – coastal inundation

Currently < 0.5% of building stock is *exposed* to coastal inundation but this will increase 5 fold

Key results: total national impacts - 1

Fire + inland flood + coastal inundation

	Accumulated damage cost	Accumulated damage cost	
	by 2050 (4% NPV) \$billion	by 2100 (4% NPV) \$billion	
Residential buildings	11.0 (8.8-13.2)	14.6 (11.3-18.0)	
Commercial and industrial	1.25 (0.29 – 2.2)	1.55 (0.67 – 2.5)	
buildings			
Road	2.1 (1.8 – 2.4)	2.5 (2.1 – 2.8)	
Rail	0.03 (0.025 – 0.035)	0.035 (0.036 – 0.046)	
Total buildings and transport	14.4 (10.9 – 17.9)	18.8 (14.3 – 23.2)	
infrastructure			

Key results: total national <u>impacts</u> - 2

Framing policy stances for adaptation responses

Anticipate: act on best estimate of future risks, or "what might happen" (more-or-less precautionary).

React: act on demonstrated present risks, or "what has happened".

Business-as-usual: follows today's trends and practices, only fixing when actually damaged.

Project in progress

Description of					
Protect if	Protect existing assets against climate hazar				
	X if:				
	 Exposure to future hazard exceeds the 				
	defined exposure trigger [ET], based on				
	the high climate outlook for the				
	relevant asset life; and				
	Protection expenditures for the most				
	cost effective option are less than C% of				
	the current replacement cost of the				
	assets at risk;				
otherwise	Accommodate through upgrade of existing				
accommodate	assets if:				
if					
	Exposure to future hazard exceeds the				
	defined exposure trigger [ET] as above;				
A	and				
	 Upgrading asset design standard reduces 				
	expected damage to acceptable levels				
	and is generally expected to be cost				
	effective over asset life, based on high				
	climate outlook;				
and only	Retreat existing assets if:				
retreat if	 Exposure to future hazard exceeds the 				
	defined exposure trigger [ET] as above;				
	and				
	 Location of asset does not meet cost 				
	effectiveness criteria for protection				
	above; or				
	 No cost effective protection option has 				
	been identified; and				
	No cost effective accommodate option				
	or upgrade has been identified.				

How much information?

Towards adaptation planning decisions

1. Existing plans / goals 2. Brainstorm decision areas + key planning decisions outside existing plans [especially longer-term, and include review of goals]

General scenarios of future change (climate +)

- 3. Narrow to existing or new decisions that could interact with change over time
- 4. Identify climate-related factors for these decisions, and how these may change*

5. Prioritise on basis of impacts studies

scenarios work if there is a substantial & critical gap!

Key impacts information

6. Identify adaptation options for each decision

- omit [or upscale] those with no feasible options

8. Adaptive

Use more detailed: climate (etc) info ifnecessary

Analyse preferred adaptation options/pathways. with appropriate approaches to risk mitigation and stakeholder engagement

learning cycle overtime

Adaptation and NRM Planning. Mark Stafford Smith

To assess these you still need an idea of future projections

- How much information do decision-makers need?
 - Getting a first pass understanding of risky sectors, etc
 - Detailed engineering risk analysis of a piece of infrastructure
- Climate Futures idea

Climate Futures web tool for projections

Major scenarios based on changes in temperature and rainfall

• Linked to other general changes at regional scales for each major scenario

2055 A2

		Surface Temperature - Annual (° C)				
		Slightly Warmer < 0.50	Warmer 0.50 to 1.50	Hotter 1.50 to 3.00	Much Hotter > 3.00	
	Much Drier < -15.00					
	Drier -15.00 to -5.00		· · · · · · · · · · · · · · · · · · ·	Likelihood: 8.3% 2 models		
Rainfall - Annual (% change)	Little Change -5.00 to 5.00			Likelihood: 29.2 % 7 models		
	Wetter 5.00 to 15.00			Likelihood: 45.8% 11 models	Likelihood: 4.2% 1 model	
	Much Wetter > 15.00			Likelihood: 8.3% 2 models		

Export to Word...

= No Evidence

See www.pacificclimatefutures.net

- Potential to seek more detail as/when needed (in time or space)
 - E.g. daily data, extremes; regional downscaled scenarios
- Major alternative 'climate futures' stable to new findings even if details change

Interactive application for one region

Conclusion: adaptation planning – climate or decision-centred??

CLIMATE ADAPTATION FLAGSHIP www.csiro.au

Mark Stafford Smith

Science Director

mark.staffordsmith@csiro.au - +61 408 852 082

