Factors affecting the distribution of tropical precipitation in CMIP5 models and their effects to future projections

Yukari N. Takayabu¹ and Nagio Hirota²¹

¹ AORI Univ. of Tokyo, Japan ² NIPR, Japan

- Takayabu et al. (2010; *J. Climate*)
- Hirota et al. (2011; J. Climate)
- Hirota and Takayabu (in revision; Climate Dynamics)

Environmental Research and Technology Development Fund (A-1201) supported by Ministry of Environment, Japan

Studies on Future Climate Projection of the Asian Region Utilizing CMIP5 Multi-Model Ensemble Data (June 2012-March 2015)

- **1.** Yukari N. Takayabu, AORI the Univ. of Tokyo Hisashi Nakamura, RCAST, the Univ. of Tokyo
- 2. Tomoaki Ose, MRI, JMA Syuhei Maeda, JMA
- 3. Hiroaki Ueda, Tsukuba University
- 4. Ryuichi Shirooka, JAMSTEC
- 5. Yoshio Kawatani, JAMSTEC

Succession of Theme2/S-5 project (2007-2012) CMIP3 intercomparison in phenomena basis

Factors affecting the distribution of tropical precipitation in CMIP5 models and their effects to future projections

Yukari N. Takayabu¹ and Nagio Hirota²¹

¹ AORI Univ. of Tokyo, Japan ² NIPR, Japan

- Takayabu et al. (2010; *J. Climate*)
- Hirota et al. (2011; J. Climate)
- Hirota and Takayabu (in revision; Climate Dynamics)

Background

Proper representation of precipitation over tropical oceans are essential for accurate simulation of atmospheric general circulation.

Tropical precipitation is controlled by SST

• Cumulus convection is enhanced with higher SST Humidity in mid-troposphere

• Observations suggest the significant suppression of deep convection from the entrainment of dry environmental air.

(e.g. Yonenama and Fujitani 1995; Numatuti et al., 1995: Brown and Zhang, 1997: Sherwood, 1999; Bretherton et al. 2004; Takayabu et al. 2010, *JC*)

Effects of SST and subsidence on convective heating (TRMM SLH: satellite-derived) (Takayabu et al. 2010)

While congestus responds linearly to SST, obedient to low-level instability, deep rain is controlled by another factor.

When heating profiles are stratified with vertical velocity, we can see midtropospheric dryness associated with subsidence strongly suppresses deep convection.

Well known biases in climate models

TRMM PR Prcp & Hadl SST

An example of Double ITCZ 20N -EQ 20S 80E 100E 120E 140E 160E 180 160W140W120W100W 80W 60 An example of Cold Tongue bias 28 EQ · 20S · 60E 80E 100E 120E 140E 160E 180 160W 140W 120W 100W 80W 60 2.25 3.5 4.75 7.25 8.5

Double ITCZ (DI) bias

• SST

Convective parametarization

Sensitivity of deep convection to the mid-troposph humidity. (Hirota et al. 2011, *JC*)
DI index (Bellucci et al. 2010) Precipitation (150-100W, 20S-Eq)

Cold Tongue (CT) bias

- Ocean Model Resolution (Robert et al. 2009; Zheng et al. 2009)
- Trade winds (Meehl et al. 2001)
 CT index
 SST (180-150W,3S-3N)

2.25

3.5

CMIP5 precipitation

4.75

6

Objectives

- Examine reproducibility of tropical precipitation by comparing CMIP3 and CMIP5 dataset, focusing on DI & CT biases.
- Discuss its relationship to
 - Sensitivity of cumulus convection to environmental conditions
 - Ocean model resolution
- Examine the effects of a model selection based on physical factors to the future projection.

Data

Climate Models CMIP5 (historical; RCP45) CMIP3 (20C3M; A1b)

Obs. TRMM PR2A25 /HadISST/JRA25

Curent Climatology: 1981-2000 (TRMM:1998-2007) Future projection: 2081-2100 Season: All Year Domain: Tropical oceans (30S-30N)

CMIP5 (17)

(Models with flux adjustment in CMIP3 are excluded.)

CMIP5 VS CMIP3

Scores for Double ITCZ and Cold Tongue

Red : High Taylor Score Models

Blue : Low Taylor Score Models

In CMIP5 ensemble,

Number of models with severe double ITCZ is reduced.

• Cold tongue bias stands out, since CT index remains similar.

WHAT CONTROLS THE DOUBLE ITCZ BIASE?

Precipitation (TRMM PR) in RH600-Tsfc diagram

Precipitation Sensitivity Index:

Taylor score of RH600-Tsfc diagram referring to this observation

CMIP5 Intercomparison with Precipitation Sensitivity Index

Good models are sensitive to the RH600. Poor models are either more sensitive to SST or PDF is not good.

5 High Score Models in the Precipitation Sensitivity Index

5 Low Score Models in the Precipitation Sensitivity Index

Comparison of Precipitation Distribution against Precipitation Sensitivity Index

5 High Score Models in the Precipitation Sensitivity Index

WHAT CONTROLS THE COLD TONGUE BIAS?

Cold tongue vs Ocean resolution

Possible causes: Higher resolution models can simulate tropical instability waves (Robert et al. 2011), or circulations & thermal structure in the equatorial Pacific (Zheng et al. 2012) more accurately.

Selection of Models for Future Projection

Methodology:

An average of 5 Good models selected as

- Good representation of prcp sensitivity to RH600 & Tsfc
- Higher ocean model resolution

are compared with the all CMIP5 model ensemble average.

Previous Studies show Weakening of Walker circulation.

(IPCC, 2007; Knutson and Manabe 1995; Emori and Brown 2005; Vecchi et al. 2006; Vecchi and Soden 2007; Xie et al. 2010; Hirota and Takayabu 2012)

	Rep of prcp	Ocn model
	sensitivity	Resolution
MIROC5	0.86	1.07
GFDL-ESM2G	0.85	0.93
MIROC-ESM	0.85	1.15
NorESM1-M	0.84	0.73
CSIRO-Mk3-6-0	0.84	1.88
MIROC-ESM-CHEM	0.83	1.15
FGOALS-s2	0.80	0.96
HadGEM2-CC	0.79	0.91
MPI-ESM-LR	0.79	1.08
inmcm4	0.78	0.73
GFDL-ESM2M	0.78	0.95
CanESM2	0.78	1.15
CNRM-CM5	0.77	0.78
MRI-CGCM3	0.67	0.70
bcc-csm1-1	0.64	0.88

Red = 5 selected good models

Blue = 5 low resolution models

Strikethrough = 5 models not sensitive to RH600

Projected Future Change (2081-2100)-(1981-2000)

-6

-9

-3

Ð

з

circulation is projected in the Selected average

9

6

Summary

 Compared to CMIP3, Taylor skill score for distribution of tropical precipitation of CMIP5 models is slightly improved.

Double ITCZ bias is reduced, but Cold Tongue bias remained.

- Double ITCZ bias is closely related to sensitivity of deep convection to mid-tropospheric humidity.
 A Precipitation Sensitivity Index is proposed.
- Cold Tongue bias is related to Ocean model resolution.
- Selection of models based on evaluations of physical factors is effective and results in significant differences in future projection: larger weakening of Walker Circulation in this case.

Hirota and Takayabu (in revision; Climate Dyn.)

Messages

 Selection of the models should be based on understanding of physical factors causing the biases.

 Selection of a climate model ensemble based on physical factors works effectively to reduce the current climate simulation biases, and results in significant differences in future projections of general circulations.

Thank you

3

Research Subjects

Various Phenomena related to precipitation change in the Asia

Convective Heating vs RH at 600 hPa

In CMIP3 models without DI, deep convection is more sensitive to the midtropospheric humidity (Hirota et al. 2011, *JC*).

 \rightarrow Similar results in CMIP5

Background

Proper representation of precipitation over tropical oceans are essential for accurate atmospheric general circulation.

Tropical precipitation is controlled by

Cumulus convection is enhanced with higher SST

Humidity in mid-troposphere

SS

• Entrainment of dry environmental air to convection effectively suppresses deep convection (Takayabu et al. 2010, *JC*; ...).

Well known biases in climate models
Double ITCZ bias
Cold tongue bias

Double ITCZ bias

- SST bias
 - Coastline
 - Upwelling
 - WISHE
 - low level cloud
 - (Mechoso et al. 1995; ...)
- Convective parametarization
 - Sensitivity of deep convection to the mid-tropospheric humidity is too weak . (Hirota et al. 2011, *JC*; ...).

Double **I**TCZ Index (Bellucci, 2010): Precipitation averaged over southeastern Pacific (150-100W,20-0S)

Convective Heating vs RH at 600 hPa

In CMIP3 models without DI, deep convection is more sensitive to the midtropospheric humidity (Hirota et al. 2011, *JC*).

Sensitivity of deep convection to humidity is increased from CMIP3 to CMIP5

Ocean resolution?

