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Background

 Aiming to assess the impact of climate change
on water resources management/planning and
to formulate adaptation strategies, the Water
Resources Agency (WRA) initiated a four-year
(2010 — 2013) Climate Change Impact and
Adaptation program (CCIAP) which is
composed of fourteen subprojects.

— Due to the nature of water resources planning and design
(for examples, flood prevention and mitigation, inundation
mapping, etc.) for which WRA bears the administrative
responsibility, it is imperative for CCIAP to consider the
impact of climate change on stormwater hydrology which
involve rainfalls in local and event scales.
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Importance of climate change
impacts on stormwater hydrology

e Key factors in water resources management and
design related to stormwater hydrology
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Objectives

e Among a group of CCIAP projects, this
project aims to assess the impact of
climate change on hydrologic projections.

— Characteristics of storm rainfail extremes

— Considering physical storm parameters (number of
occurrences, duration, total rainfall depths, etc.)

— Stochastic modeling of storm occurrences and time
variation of rainfall intensities.

A GCM-stochastic model integrated approach
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Key concerns
* From a hydrological perspective

—How do we bridge the gap between climate
projections and hydrologic projections?

e Downscaling (spatial and temporal)
e weather generators (simulating daily precipitations)

— What statistical properties need to be
preserved in downscaled data?

e Can the downscaled data preserve the spatiotemporal
variation of the observed data?

¢ Stormwater hydrology involves rainfall characteristics of
daily and sub-daily scales.
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Downscaling of GCM outputs
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Statistical Downscaling Model (SDSM)

 Multiple regression model
— Large-scale predictors: GCM or NCEP data

— Local or station predictands: temperature or
precipitation (almost exclusively in daily
scale)

 The predictor-predictand correlation is generally low.
Predictors having correlation coefficient in the range of
0.13-0.25 are considered to be acceptable when dealing
with precipitation downscaling (cf. Wilby et al., 2002).

 Weather generator

\\
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Weather generators

e WGEN (Richardson & Wright, 1984)

— Dry/wet day transition probability matrix
(Markov chain)

— Exponential/gamma random number
generation for wet-day daily rainfall
simulation

e LARS-WG (Racsko et al., 1991; Semenov
& Barrow, 1997)
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 Generate daily precipitation series.

* Daily rainfalls are independentiy
generated (serial correlation of daily
rainfalls is not considered).

» Statistical property of wet/dry spells are
not well preserved.

 Performance evaluation of the models
were almost exclusively based on
monthly scale statistics. [Monthly mean
2 and standard deviation]

Lab for Remote Sensing Hydrology and Spatial Modeling
Dept. of Bioenvironmental Systems Engineering, NTU

RSLAB-NIFU. ‘ January 16, 2013



Examples of performance evaluation of downscaling
techniques.
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Comparisons of the observed and the SDSM-estimated month-wise mean daily precipitation and
its standard deviation.

Performance of the regression model

(a) Calibration of the regression models for Seville based on 1961-1990 observed data. Variance
explained (%)

Jan ~ Feb Mar Apr May JTun Jul Aug Sep Oct Nov Dec

Temp. 938 913 845 819 849 903 854 779 940 874 956 975
Precip. 823 846 658 817 773 682 200 648 544 674 794 86.5

(b) Verification of the regression models for Seville using 1951-1960 observed data, Correlation
coefficients between observed data and those predicted by the regression models

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Temp. 095 099 082 094 087 087 085 093 097 073 096 098
Precip. 091 096 092 097 067 064 00 083 072 007 064 0389
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e Storm characteristics are not considered
in weather generator.  Random in nature.

— Frequency and timing of storm occurrences
— Storm duration
— Total rainfall depth of a storm

— Percentages of the total rainfall of individual intervals within
the storm duration (dimensionless hyetograph)

e The above characteristics need to be
preserved in the downscaled data.

 The way out

—Stochastic storm rainfall simuiation model
(SSRSM)
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e Stochastic storm rainfall simulation
model
— A stochastic model capable of representing

all the above characteristics of storm rainfall
Drocess.

— Physical storm parameters are considered as
random variables in the model.

— GCM outputs are used to assess changes in
statistical properties of storm parameters
under certain climate change scenarios.

Lab for Remote Sensing Hydrology and Spatial Modeling
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Stochastic storm rainfall process

Storm characteristics
eDuration
*Event-total depth

eInter-arrival time

*Time variation of rain-rates
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Season-specific storm characteristics

Frontal Nov - April
Mei-Yu May - June
Convective July - October
Typhoon July - October
— Convective,
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Climate change scenarios and
GCM outputs (Case 1)

e Emission scenario: A1B
e Baseline period: 1980 — 1999

* Projection period
— Near future: 2020 — 2039
— End of century: 2080 — 2099

e GCM models: change rates of monthly rainfalls
(outputs of 24 GCMs provided by NCDR,
statistical downscaling)

Hydro-meteorological scenario: extreme
situation
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Rainfall Change Rate (%)

Changes in monthly rainfalls (Statistical downscaling,
Ensemble average with standard deviation adjustment)
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A weather generator and ANN coupled aigorithm was
developed to determine changes in the mean and standard
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 An example of changes in means of storm
parameters under climate change

. Storm types
Storm characteristics _ _
Mei—Yu Typhoon Convective  Frontal
% of events 1.1 1.31 1.31 0.42
Duration 1.04 1.36 0.99 0.68
Total depth 111 1.06 0.71
Inter—event time 0.93 0.89 0.86 1.5

Projection period/ Baseline period

January 16, 2013 Lab for Remote Sensing Hydrology and Spatial Modeling
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Climate change scenarios and

GCM outputs (Case 2)
e Emission scenario: A1B

e Baseline period: 1979 - 2003
* Projection period
— Near future: 2015 — 2039
—End of century: 2075 — 2099

e GCM model: MRI+WRF dynamic
downscaling

 Hydrological scenario: changes in storm

. characteristics
A
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Storm characteristics (average duration of typhoon)

Average Duration (hrs)-Typ Average Duration {(hrs)-Typ

22
25.0 21
24.5 20
119
24.0
118
23.5
r 117
23.0 £ 16
15
22.5
14
22.0 _
13
120.0 1205 1210 1215 122.0 120.0 1205 1210 1215 1220

Gauge observations MRI (1979 - 2003)

Average Duration (hrs)-Typ Average Duration (hrs)-Typ
25.0 25.0
245 2.5 Source:
NCDR, Taiwan
24.0 24.0
23.5 23.5
23.0 23.0
2.5 2.5
2.0 Ay 22.0

120.0 1205 1210 f121.5 .0 120.5

L'ab for Remote Sensing Hydrtl)2 ogy andzlsopéﬁsal ]ﬁ?l(bdeling

January 16, 2013 MRI (20?591- zbl_a,'gynvironmental S“memyeez'@gg)ﬁu

19




Storm characteristics {(average event-total rainfalls of typhoon)
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Stochastic Storm Rainfall Simulation Model
(SSRSM)

e Simulating occurrences of storms and their
rainfall rates

* Preserving seasonal variation and temporal
autocorrelation of rainfali process.

 Duration and event-total depth
e Characterized by a bivariate gamma distribution (typhoons)

* Inter-event times
e Gamma or log-normal distributions

* Percentage of total rainfalls in individual
intervals (Storm hyetographs)
* Modeled by a first-order Truncated Gamma-Markov process

Lab for Remote Sensing Hydrology and Spatial Modeling
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e Simulating occurrences of storm events
of various storm types

—Number of events per year

» Poisson distribution for typhoon and Mei-Yu

— |nter-event time

e Gamma or log-normal distributions

Lab for Remote Sensing Hydrology and Spatial Modeling
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* Simulating joint distribution of duration
and event-total depth

— Bivariate gamma distribution (e.g. typhoons)
— Log-normal-Gamma bivariate

—Non-Gaussian bivariate distributions were
transformed to a corresponding bivariate
standard normal distribution with desired
correlation matrix.

] Lab for Remote Sensing Hydrology and Spatial Modeling
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Cumulative probability
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 Simulating percentages of total rainfalls
in individual intervals (Simulation of
storm hyetographs)

—Based on the simple scaling property

e Durations of all events of the same storm types are
divided into a fixed number of intervals (e.g. 24 intervals).

e For a specific interval, rainfall percentages of different
events are identically and independently distributed (IID).

e Rainfall percentages of adjacent intervals are correlated.

 The simple scaling is supported by Horner equation
fitting of the IDF curves.

Lab for Remote Sensing Hydrology and Spatial Modeling
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Simple scaling

4 Instantaneous rainfall

intensity

Lab for Remote Sensing Hydrology and Spatial Modeling
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 Simulating percentages of total rainfalls
in individual intervals (Simulation of
storm hyetographs)

—Based on the simple scaling property

e Durations of all events of the same storm types are
divided into a fixed number of intervals (e.g. 24 intervals).

e For a specific interval, rainfall percentages of different
events are identically and independently distributed (IID).

e Rainfall percentages of adjacent intervals are correlated.

 The simple scaling is supported by Horner equation
fitting of the IDF curves.

Lab for Remote Sensing Hydrology and Spatial Modeling
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IDF Curves and the Scaling Property

 Horner’s Equation:

- aT”
7 (D) = (D —I—b)c

D >> b , particularly for long-duration events.

i, (D) = 2°f, (AD) (D)= 4" 7,(AD)

e C=-H
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Hyetograph simulation

» Rainfall percentage of each individual interval is modeled by a truncated
gamma distribution. (Rainfall percentage of each individual interval is
bounded from above. For example, peak rainfall percentage 1is less than
40%.)

> Time-to-peak and peak percentage are simulated firstly.

» Rainfall percentages of neighboring intervals are correlated and can be
modeled by a bivariate truncated gamma distribution.

» 15t order Markov process simulation for rainfall percentages of other
intervals.

> All rainfall percentages sum tQgl 00%.
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Hyetograph Simulation results (Typhoons)
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Kaoshiung
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Each simulation run yields an annual sequence
of hourly rainfalls. 500 runs were generated for
each rainfall station.

/f«\\ Time of storm occurrences
E \\\\E\i (Duration, total depth) bivariate simulation
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Hourly rainfall
sequence
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Examples of hourly rainfall sequence
(Kaoshiung)

Rainfall(mm)
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ECDF of Annual Max. Rainfalls
Observed data vs simulated data (25 sets of 20-year period)
(Baseline period: 1980-1999)
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Application of simulation resuits

e Extreme rainfall assessment
— Annual maximum rainfall depth
— Hydrological frequency analysis

e Seasonal rainfall assessment
e Water resources management

\\
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Impact on design storm depths
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Rainfall of 24-hour, 100-year return period (Statistical

Downscaling scenario) in Tanshui River Basin
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Conclusions
 The SSRSM is highly versatile.

— Can provide rainfall data of different
temporal scales (hourly, daily, TDP, monthly,

vearly)

— Can facilitate the data requirements for
various applications (disaster mitigation,
water resources management and planning,
etc.)

—Based on assumptions of changes in storm
physical parameters.

Lab for Remote Sensing Hydrology and Spatial Modeling
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* Uncertainty is 2n essential component in
all climate change studies.

e Scenario setting is crucial and may be
mission-oriented.

» Be proactive in taking progressive (if
possible, no-regret) adaptation
measures. Don’t be reactive.

Lab for Remote Sensing Hydrology and Spatial Modeling
Dept. of Bioenvironmental Systems Engineering, NTU

s January 16, 2013 “



* References

Wu, Y.C., Hou, J.C., Liou, J.J., Su, Y.F., Cheng, K.S., 2012. Assessing the
impact of climate change on basin-average annual typhoon rainfalls with
consideration of muitisite correlation. Paddy and Water Environment, DOI
10.1007/s10333-011-0271-5.

Liou, J.J. Su, Y.F.,, Chiang, J.L., Cheng, K.S., 2011. Gamma random field
simulation by a covariance matrix transformation method. Stochastic
Environmental Research and Risk Assessment, 25(2): 235 — 251, DOI:
10.1007/s00477-010-0434-8.

Cheng, K.S., Hou, J.C., Liou, J.J., 2011. Stochastic Simulation of Bivariate
Gamma Distribution — A Frequency-Factor Based Approach. Stochastic
Environmental Research and Risk Assessment, 25(2): 107 — 122, DOI
10.1007/s00477-010-0427-7.

Cheng, K.S., Hou, J.C., Wu, Y.C., Liou, J.J., 2009. Assessing the impact of
climate change on annual typhoon rainfall — A stochastic simuiation
approach. Paddy and Water Environment, 7(4): 333 — 340, DOI
10.1007/s10333-009-0183-9.

Cheng, K.S., Chiang, J.L., and Hsu, C.W., 2007. Simulation of probability
distributions commonly used in hydrologic frequency analysis. Hydrological
Processes, 21: 51 — 60.

Lab for Remote Sensing Hydrology and Spatial Modeling

Dept. of Bioenvironmental Systems Engineering, NTU 42

January 16, 2013




Acknowledgements

e Financial supports by the National Science Council,
Water Resources Agency, Council of Agriculture of

Taiwan.
* GCM outputs provided by NCDR, Taiwan.

o Lab for Remote Sensing Hydrology and Spatial Modeling
‘4 January 16, 2013 Dept. of Bioenvironmental Systems Engineering, NTU 43



%

SRR 2

7]

O

SR

ol [0<—
PR B S

R 00 2 B BRIERIGCMIR T,

S

1P S LS

-
[

XI5 S 5 7K BA P2 PR e R B E PR = GCMAE T

44



HAL - REBWR AT BRI PRIFECCME A

Source: NCDR TCCIP Project

Mean precipitation of MJ

iMean temperature of JAS

Temperature%riability during MJ
season

Mean temperature—of M)

Mean MSLP of JAS

Temperature Variébility during JAS
season

Mean MSLP of MJ

Precipitation Variability
during MJ season

Monthly average rainfall distribution
through latitude (25N-40N)averaged
over (100-160E)

'Mean precipitation of JAS

Precipitation Variability y
during JAS season

Precipitation Variability
during Mei-yu season

cmap
Average Monthly Rate of

] . 2 ;':'3‘_‘,,JL
o | (= e %
L8}

Prsari pitatic

= -

- /';/:‘
zon | . = o~
1 N, 2 ’ u‘:;,“
) 18 \% i L ol ..

JIC]‘ 120F 1 J::'[’:

10

Most of them
are of similar
| pattern like

observation.

—

P

=

R

Iingv-echam5S

45




~ 2 N
FEIL - HB SR 7K R 8 L PR R =
Source: NCDR TCCIP Project
1.4
\ 1.3
FIV l F ﬁ 12 - 4/24 * 5024
EKHA + SUKER+ § 1.1 - 4
WA — | K a e L
. 3 T >§ 0 "r-' - > E=3
11 1 & s L e . i
SUKHA— SKER+ 07 . 9/24
FitiZKEH — |
Y v o.ls 08 1 12 14
BTSRRI
HREEGE SR - (BB S ZIHRYGCMAE = (S (k)
1.bccr _bcm2 0 4.iap_fgoalsl O 7.ipsl_cm4
1 2.cccma_cgem3_1 5.ingv_echam4 8.mri_cgcm2_3 2a

| /) 3.csiro_mk3 5 6.inmcm3_0 9.ukmo_hadgeml
46



eungy!
Tl

DA GOMSE
R o = E FRITKEGCMIRT, Mk E NS KBRS C AR E R T

-alb_2020-

/\

1.07 124 1

2039 csiro_mk3 0 5)’27](53_[ -191
-alb 2020- 1.4 -
- 1. 1.1
2039 gfdl cm2_0 00 o *#-3 )
-alb_2020- ¢ 1.07
2039 csiro_mk3 5 S e ;J;ll-z i
-alb_2020- 1 - ¢+ 1.00
u 1.03 0.97 ) ’
2039 _ingv_echam4 2 Az 0.99‘97 N\
_alb_2020- LS 5 1 ! 0.95 1,03 \
2039 _mri_cgcm2_3_2a ' ' 0.9 - 0.99 =106
e APl 099 00 3 Mog | e
2039 _miroc3_2_hires ' ' g " /
1t9-7 . -
el 20 095 097 3
2039 _miroc3_ 2 medres ' ' 0.6 . — . !
-alb_2020- 0.6 0.8 . 1.4
= . . 7 N
20360 N2 1 092 100 4 KT Rt
“alb_2020-

0.97 1.05
2039 _mpi_echam5 4

a7



KN AR IBIRKZE N &

MME_ Mean = ALBHE-5 T 24 GCMs:h)s & T 31E o

MME SD : 2413 GCMs T 518 i # ks k #p 4c i — 2
R

3M_ Mean : 3B #p & 5 4 GCMs(csiro_mk3_5,
ingv_echam, mri_cgcm2_3 2a) - 3=E o

3M_SD : #-3Bdig & & BAGCMenT 2 iE ik T 45K &
v - BIRFE R A

48



1PERhE2{ERIFIRRE

\/

H R (LRS- SRR

A B S L3P -3 /K s
AN
- g
% ——MME_Mean =
Ry > A /.-\-__ ~——=MME_SD ]ﬁ
DI e g e GRS g
g4 FEFE——a—tyg > & 7 8 T WRET 1?4 —+3M_Mean *
: T<::></ -
-_— L ————————————— mii’ - T - S S S S S SaS BaS Bae B e ..

VR T24(EGOMIES B (b i’iﬁﬁwﬁﬁﬁﬁﬂ'
| TR FEARAE A ﬁfii%zifjriz HEIF5T - |

S{LE A

-100
Hi# Hit

49



Temporal variation of monthly rainfalls
(Dan-Shuei River Watershed)
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Temporal variation of TDP flows
(Southern Taiwan)
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