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ls-elirrate-changereal?
What dowe do about it?
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. . "Most of the observed increase
"The balance of evidence "There is new and in globally averaged

suggests a discernible stronger evidence that temperatures since 1950 is very
human influence on global most of the warming ' likely [>90%] due to the
climate” observed over the last 50 observed increase in

years is attributable to | anthropogenic greenhouse gas

" =g m o ”
human activities” concentrations



Motivatjons for climate
modeling have changed

Historically, climate maodélswere
research tools.

Now, we need-to use them to inform
real-world adaptation decisiens:



The need to inform decisions introdytes
important modeling challenges

* Répresentation of fine spatighkscale results
* ‘Representation of extremes

¢ Deterministic forecasts of natural variability
(“decadal prediction”)

* Uncertainty quantification (UQ)

All-of these are model-weaknesses.



The need to inform decisions introdytes
important modeling challenges

* Répresentation of fine spatighkscale results

* Uncertainty quantification (UQ)



Downscaling methods

Nested.dynamiical: A limited-domain fModeldriven
by boundary information from a-glokal-domain
model

Global dynamical: A fine resolution atmospheric

model driven by prescribed SSTs from a coupled
OAGCM.

Empirical/statistical: Fine-scale informatigniform
observations iS‘combined with large-scale
projectedchanges from GCMs.



Fine-resolution global model

Provides a‘globally consistent The'most
solytion: compdutationally
_ demanding of any
Is not'subject to errors St
. . ption.
Introduced by poor-quality
boundary data Produces a lot of output
Can work beautifullyito drive a Presently limjted to
nested models about 20 km

Difficult'te downscale a

Since,results’are global, a good area large\number of GCMs.
far international collaboration
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LLNL” ASCI\White:” August, 2001
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Limited domain.model nested within a
fine-resolution global model

Annual Mean Precipitation

Observations “Nested” models
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Statistical/Empirical downscaling

Adds detail based"on observations
Uses climate“madel/prediction of changes on.arge\scale
Easy to downscale multiple GCM simulatians
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http://gdo-
dcp.uclinl.org/downsgcaled=Cmip_projections/dcplntekface.ht
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SCRIPPS INSTITUTION OF OCEANOGRAPHY

* A cooperative effort of multiple institutions
* ThoUsands of users since 2007
* (Results for United States only



RECLAMATION  ZUSGS Bias Corrected and Downscaled WCRP

“ CLIMATE .
v CD L‘ CMIP3 Climate and Hydrology Projections

SCRIPPS IMNSTITUTION OF QCEANOGRAPHY
This sile 5 bes! viewed wilth Chrome (recommended] or Firefox, Some fealures are unavaiabde when using infemel Expiorer. Requings JavaScopt fo be anablpg

Available now:

e (BiasyCorrected, Statistically Downscaled (BCSD)
monthly T and P from 16 CMIP3.GCMs, 3 scenarios

e Bias-Corrected Constructed Analog (BCCA) daily
T ., T . andPfrom 7 CMIP3 models, one scenario

* Daily simulations of surface hydrology from 26
CMIP3 madels,3 scenarios

max/ " min/

e Alldownscaled results at 0.125° grid scale

http://gdo-dcp.uclinl.org/downscaled_cmip_projections/dcplnterface.html



RECLAMATION  EUSGS Bias Corrected and Downscaled WCRP

“ CLIMATE .
Urivaratty CD L‘ - CMIP3 Climate and Hydrology Projections

SCRIPPS IMETITUTION OF QCEANCGRAPHY

This sile 5 bes! viewed wilth Chrome (recommended] or Firefox, Some fealures are unavaiabde when using infemel Expiorer. Requings JavaScopt fo be anablpg

Availabte soon: CMIP5 results:

—\Bias-Corrected, StatisticallyDownscaled (BCSD)
monthly T and P from 237 projections, 4 RCPs

— Bias-Corrected Constructed Analog (BCCA) daily
T ., T . andPfrom/147 simulations, 4 RCPs

max/ " min/
— Daily simulatiens/of surface hydrology from 10@
simulatiens

— All downscaled results at 0.125° grid scale
— Results for United States only

http://gdo-dcp.uclinl.org/downscaled_cmip_projections/dcplnterface.html



Uncertainty: How'reliable are climate projections?

e Wizard of It By Brant Parker & [ohnny Hart
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Why Isifuttre climate uncertain?




“Scenario uncertainty:”
Future farcings are unknowable;
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“Response uncertainty:” Different mogdels
respond. differently to same forcings
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Inabllity to prédict internal variability
Introduces uncertainty
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Relative importance of different sources
of uncertainty varies with time haqrizen

90% uncertaintysange divided by predicted ciiange in-global T

Scenario

SourcefEd Hawkins and Rowan Sutton, 2009



UQ for adaptation decisions

e Typically mvolves:
—,Local spatial scale
% time horizons as short as 20-30 years
« Natural variability may be the dominant
source of uncertainty
— Response uncertainty less important
— Scenario uncertainty may be negligible

* Systéms often sensitive to extremies



UQ usvally based on

ensembles of simulations

“"Ensemble‘ofopportunity” e.g. CMIP3, CMIPs;:
Simulations from different quasisindependent
models. Forcings very similar.

PCMDI - Program For Climate Model Disgnosis and infercompanson ld

“"Perturbed physics ensemble (PPE) "e.qg. CPDN :
Multiple simulations resulting from systematic
variation,of parameter values within one model

J climateprediction.net




“"Ensembles-of opportunity:
Not a goed basis for UQ

(e.g. CMIP3, CMIPg)

* Are affected by errors commaento multiple
models (i.e. lack of model independence);
— They have errors in common; we don’t know how
Important!
» By design do hot,sample the full range of
possible;outcomes;

e These.shaortcomings discussed by e.g. Knutti
and\Tebaldi.



Perturbed Physigs Ensembles (PPEs)

* Can bettersample the full range of outcomes
e But are subject to systematicnedel errors

* \Example: UQ project at LLNLexploring
sensitivity to 28 parameters
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Estimates of climate sensitivity are skewed.

Current mean
climate skale
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Source: Knutti and Hegerl, Nature Geoscience, 2008




Ensembles of opportunity do not capture
skewness'of climate sensitivity.

Climate Sensitivity vs. Model Skill.
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“An Incanvenient truth:”

Climate'model evaluation assumes that
better ability to reproduce observations
implies better predictiofis af the future.

This Is not always true:

Predictiohs of*better” models are oftén
indistinguishable from projectiopns of
“Wworse” models.



No correlation between model quality an projectéd
trends in futuke seasonal temperature
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Deviation of model results from observations

Source: David Pierce, UC San Diego



SummaryofUQ challenges

* Ensemblesof opportunity are aré hot a good
basisTor UQ.

¢ Tests of model quality are gflimited help in
reducing and estimating uncertainty.

» Perturbed physics-€nsembles are subject to
systematic errors.




Reality:

* We ¢an't reliably estimate PDFs of'future
climate.

. Many decision-makers wouldn’t know how to
use them if we djd.

e "Bottom-up” adaptation methods allow more
reliable estimation of uncertainty by asking
narrower questions.



"Bottom.up” approaches ask
narkower questions

"Bottem-up:” Analyze stakeholder
vulnerabilities and decisiofis.

— Ask specific questions; example on next slide

“Top-down:"€onstruct PDFs of future climate
variables and impacts-related variables.

—Askbroad questions: e.g. How does elimate
change affect water supply reliability?



Why are “bottom up” approaches bettex?

* Because'mueh.of the uncertainty in future climate
doesh’t.affect decisions.

 \Example: water supply reliability; inCalifornia.

«”Not clear if mean precipitation will increase or
decrease (about 50% of GCMs predict increase; 5o%
predict decreasg).

* But watef,supply reliability does not depend strongly
on me€an precipitation. It does depend 6n

= Amount of snow and timing of snowmeit

— Duration and severity of droughts



Research needs
for adaptation

Impreve “decadal” climate prediction.

ldentify more tests of model guality that narrow
rtanges of future projections.

Cooperate on globaldynamical downscaling.
Increase sharing ofidata and experiences.

Improve methodelogies by learning from other
fields, e.g\disaster preparedness.
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