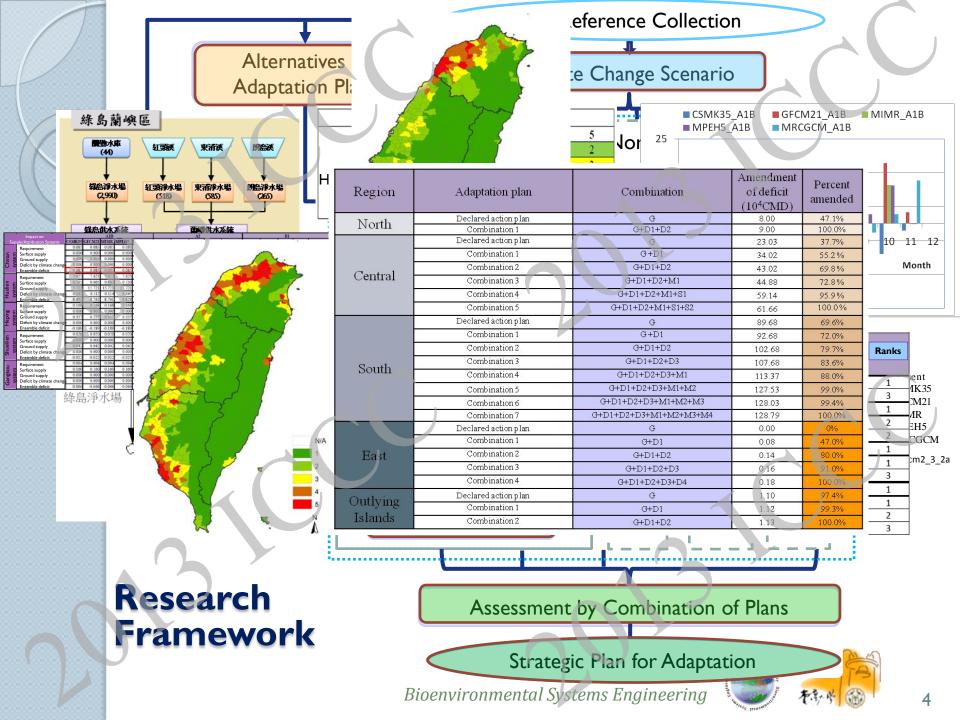
Water Resources Planning Institute Water Resources Agency Ministry of Economic Affairs

Strengthening Water Supply System Adaptive Capacity to Climate Change in Taiwan

2013TCCIPNedr Yu-Pin Lin Professor, National Taiwan University

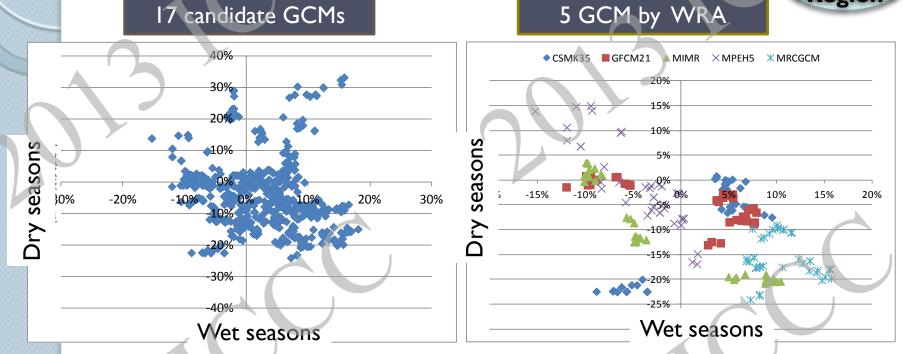

Prof. Ming-Daw Su, Dept. of Bioenvironmental Systems Engineering, NTU Prof. Liang-Cheng Chang, Dept. of Civil Engineering, NCTU Prof. Nien-ming Hong, Dept. of Tourism and Recreation Management, OCU Prof. Ke-Sheng Cheng, Dept. of Bioenvironmental Systems Engineering, NTU Dr. Chih-Chao Ho, Construction and Disaster Prevention Research Center, FCU Environmental & Infrastructural Technologies, Inc. (EITCO)

Contents

- Goals
- Framework
- Impacts of Climate Change on Water
 Resources
- Vulnerability, hazard and Risk assessment
- Action Plans for Adaptation under Climate Change
 Final Remarks and suggestions

Goals

Evaluate and map the risk distribution (generated by vulnerability and hazard) of water resources impacted by climate change not just only in eastern area, but also in Taiwan and outlying islands for making strategies and plans that strengthens adaptive capacity on water resources.



Impact of Climate Change on Water Resources

- Climate change scenarios and downscaling
- Assessment of available amount
- Evaluating future requirement
- Assessment of impacts by climate change

Rainfall change by GCMs simulated for years 2020~2039

Ex. Eastern Region

To meet the end for water resources management, the 5 GCMs by WRA are considered.

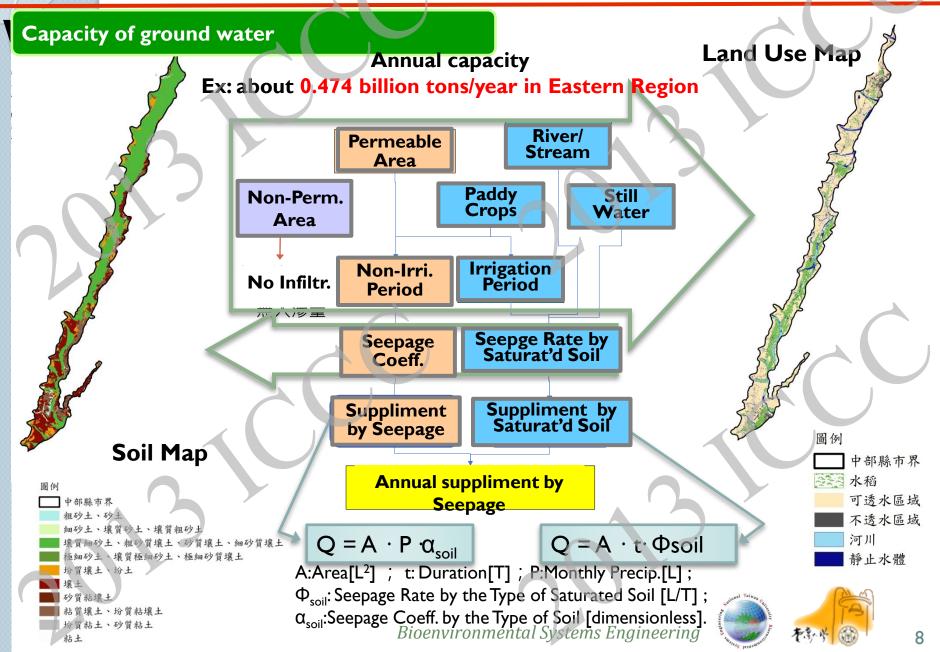
Available amount: surface water

Capability of attribution systems

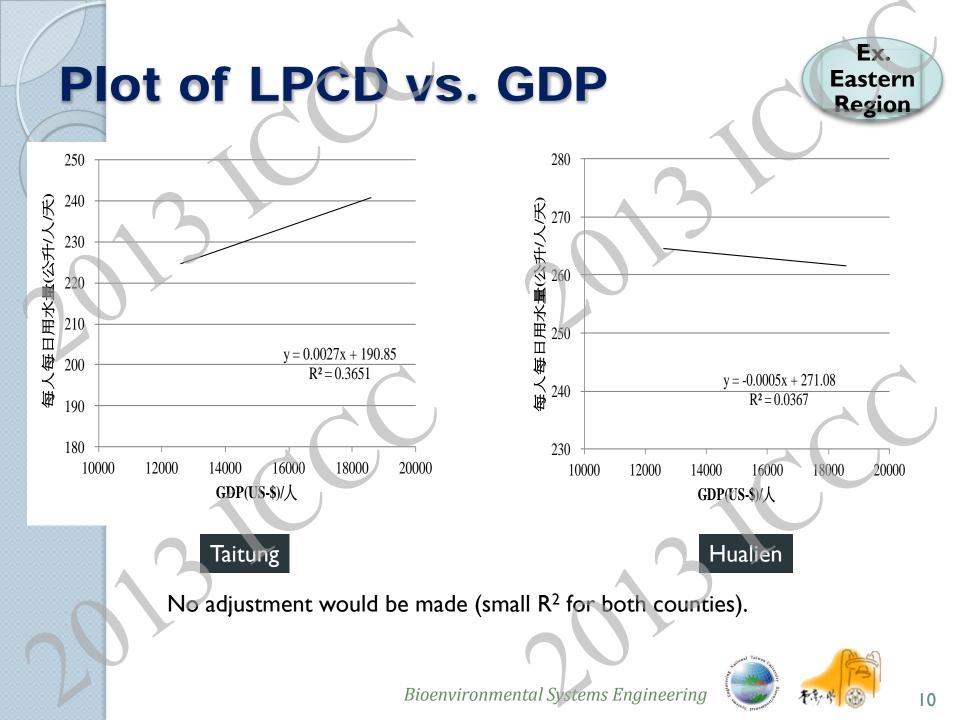
Rate of Deficit=0.07

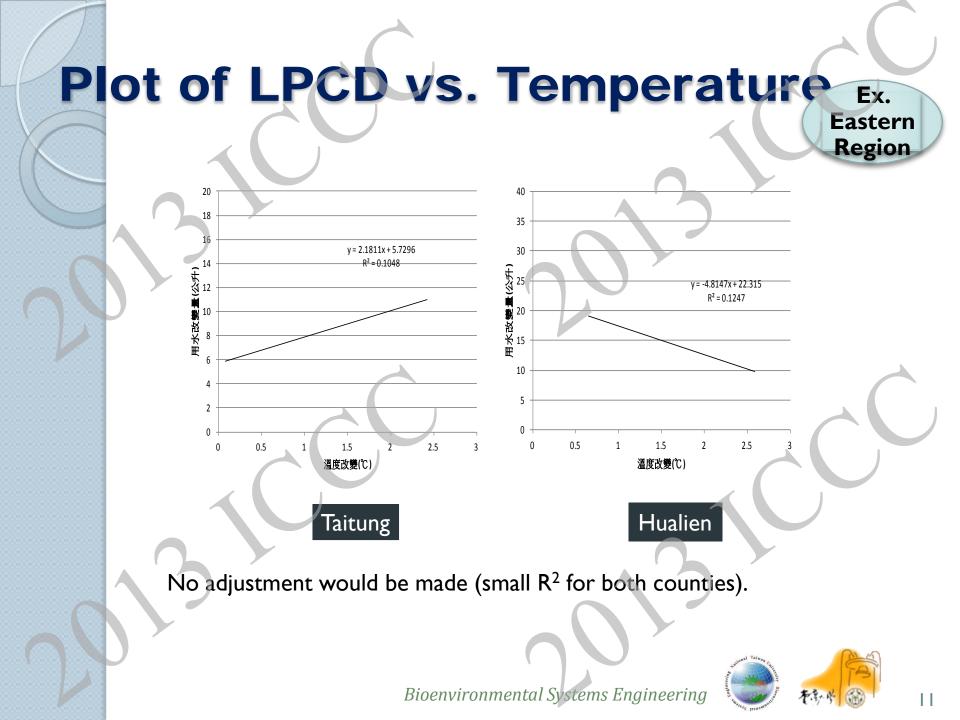
(10⁴ Cubic meter/day)

	Scenario	Scenario	A1B					
County/City	GCM Models	of no climate change	CSMK35	GFCM21	MIMR	MPEH5	MRCGC M	
	Requirement	10.868	10.868	10.868	10.868	10.868	10.868	
	Supply by surface water	4.482	4.3	4.37	4.368	4.435	4.289	
Hualien	Supply by ground water	19.334	20.685	20.685	20.685	20.685	20.685	
	Deficit due to climate change		0.182	0.112	0.114	0.047	0.193	
	Ensemble deficit	-12.948	-14.116	-14.186	-14.185	-14.252	-14.106	
	Requirement	6.884	6.884	6.884	6.884	6.884	6.884	
	Supply by surface water	3.317	2.854	2.617	2.826	3.21	2.464	
Taitung	Supply by ground water	8.024	7.979	8.175	8.126	8.084	8.184	
	Deficit due to climate change	-	0.464	0.7	0.492	0.107	0.853	
	Ensemble deficit	-4.458	-3.949	-3.908	-4.068	-4.41	-3.764	


Bioenvironmental Systems Engineering

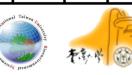
本教学 (論)


Ex.


Eastern Region

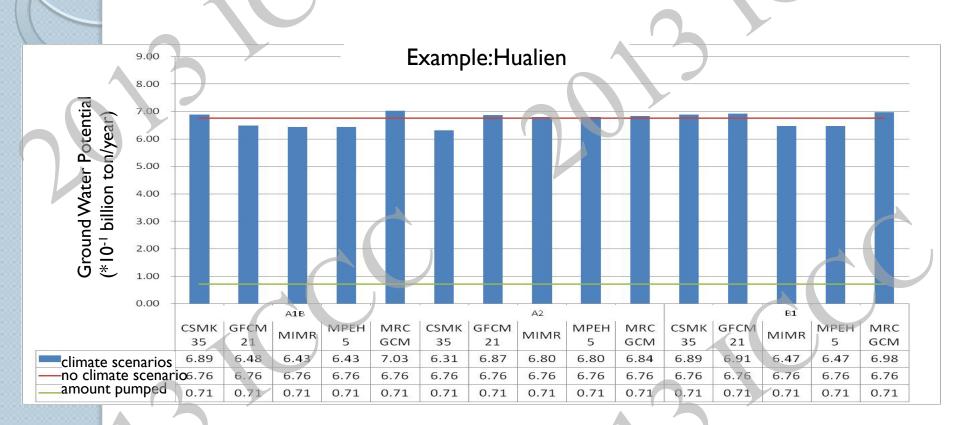
Available amount: underground

Requirement by Domestic Use LPCD₃₁*=LPCD₃₁+GDP adjustment +Temp. adjustment LPCD : Liters Per Capita per Day LPCD₃₁ : LPCD by population growth at 2031 **GDP** and temperature adjustments • Plot the relation between LPCD and GDP/temp. Adjust LPCD if R²>0.36 Calculated for each county **Requirement by Industrial Use** The growth of industrial requirement implicitly includes the trend of GDP. Assumes no impact by temperature. No adjustment has been made.


Assessment of impact by climate

change

Analysis of Supply Potential on Attributing Systems


Ex: Hualien

														unit	ts ∶*I	0 ⁴ CMD
	Impact on			AlB		_	A2							B1		
Sup	ply/Attribution Systems	CSMK35	GFCM21		MPEH5	MRCGCM	CSMK35	GFCM21	MIMR	MPEH5	MRCGCM	CSMK35	GFCM21	MIMR	MPEH5	MRCGCM
	Requirement	0.085	0.085	0.085	0.085	0.085	0.085			0.085	0.085	0.085	0.085	0.085	0.085	0.085
E E	Surface supply	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Chinan system	Ground supply	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ည် နို	Deficit by climate chang	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Ensemble deficit	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085
	Requirement	7.623	7.623	7.623	7.623	7.623	7.623	7.623	7.623	7.623	7.623	7.623	7.623	7.623	7.623	7.623
E E	Surface supply	0.595	0.665	0.663	0.730	0.584	0.464	0.626	0,453	0.468	0.566	0.608	0.664	0.538	0.565	0.607
allie ter	Ground supply	15.721	15.721	15.721	15.721	15.721	15.721	15.721	15.721	15.721	15.721	15.721	15.721	15.721	15.721	15.721
Hualien system	Deficit by climate chang	0.182	0.112	0.114	0.047	0.193	0.313	0.151	0.325	0.310	0.212	0.170	0.113	0.240	0.212	0.171
5 1	Ensemble deficit	-8.692	-8.762	-8.761	-8.828	-8.682	-8.562	-8.723	-8.550	-8.565	-8.663	-8.705	-8.762	-8.635	-8.663	-8.704
	Requirement	0.168	0.168	0.168	0.168	0.168	0.168	0.168	0.168	0.168	0.168	0.168	0.168	0.168	0.168	0.168
<u>∞</u> ∈	Surface supply	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Heping system	Ground supply	0.357	0.357	0.357	0.357	0.357	0.357	0.357	0.357	0.357	0.357	0.357	0.357	0.357	0.357	0.357
He sys	Deficit by climate chang	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Ensemble deficit	-0.189	-0.189	-0:189	-0.189	-0.189	-0.189	-0.189	-0.189	-0.189	-0.189	-0.189	-0.189	-0.189	-0.189	-0.189
_	Requirement	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
ier E	Surface supply	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
hueilie system	Ground supply	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042	0.042
Shueilien system	Deficit by climate change	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Ensemble deficit	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022	-0.022
	Requirement	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094	0.094
em u	Surface supply	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160
Gangkou system	Ground supply	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ar sys	Deficit by climate chang	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0	Ensemble deficit	-0.066	-0.066	-0.066	-0.066	-0.066	-0.066	-0.066	-0.066	-0.066	-0.066	-0.066	-0.066	-0.066	-0.066	-0.066

Assessment of impact by climate change

Ground Water Potential

Vulnerability, hazard and Risk

Analysis of vulnerability by usage
Analysis of hazard under climate change
Map of risk under climate change

Level of vulnerability

Domestic use: level by population density

Level of vulnerability	Т	2	3	4	5
Population Density (per km ²)	<174	174~468	468~967	967~2771	>2771

Industrial use: level by yearly gross product

Level of vulnerability	I	2	3	4	5
Gross product (*10 ³ NT\$)	<618,692	618,692~ 2,399,779	2,399,779~ 8,943,901	8,943,901~ 25,455,521	>25,455,521

Agribultural use: level by area of paddy fields

	evel of ulnerability	1	2	3	4	5
	rea of					5
₽	addy fields	<97	97~607	607~1387	1387~2221	>2221
(hacters)					

Level of hazard

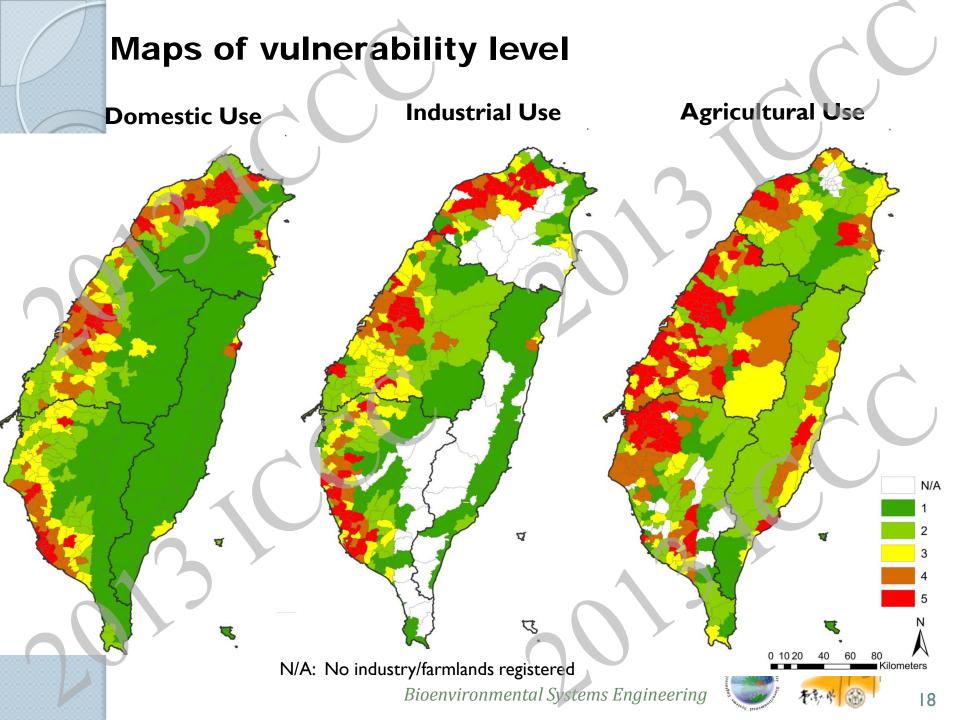
- Public use (civil + industrial):

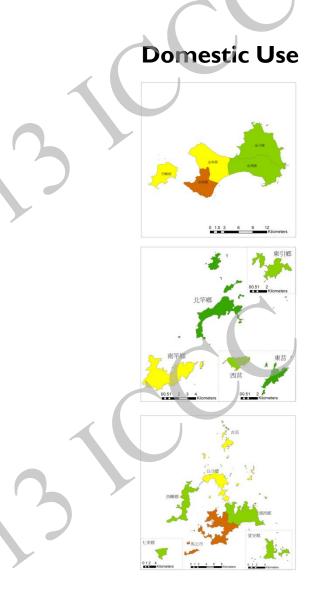
• Defined by DPD (Deficit Percent Day) index

Level of Hazard	1	2	3	4	5
Deficit percent day at 2-Year Return Period	<100	100~600	600~1500	1500~3500	>3500
Severity	Low	Acceptable	Tolerable	Severe	Very Severe

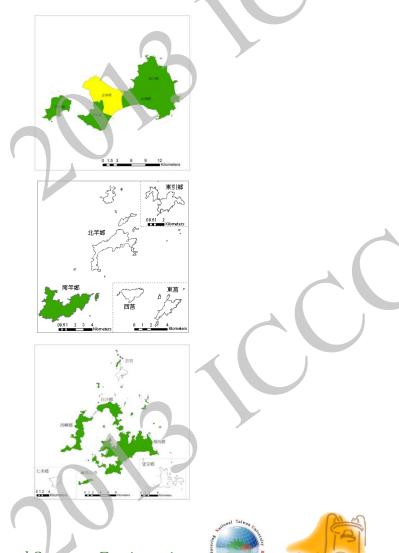
- Agricultural use:

• Defined by water shortage rate (%)


Level of Hazard	1	2	3	4	5
Water shortage (%) at 2-Year Return Period	<15	15~20	20~30	30~40	>40
Severity	Low	Acceptable	Tolerable	Severe	Very Severe


Risk ranking matrix

Combines the information from vulnerability and hazard


Risk ranking matrix Vulnerability Hazard 5 2 4 2 2 Hazard 3 3 2 2 3 3 高雄市 現況公共給水危害度 Risk Vulnerability 高雄市 120年生活給水風險度

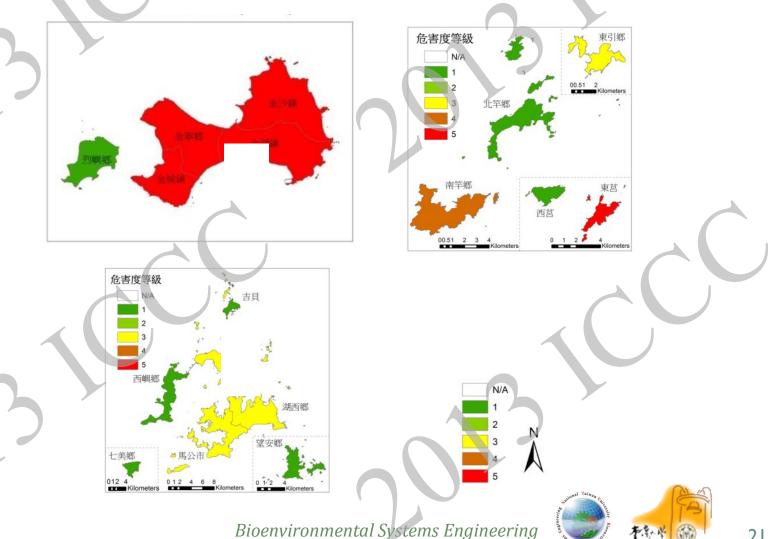
Maps of vulnerability level: outlying islands

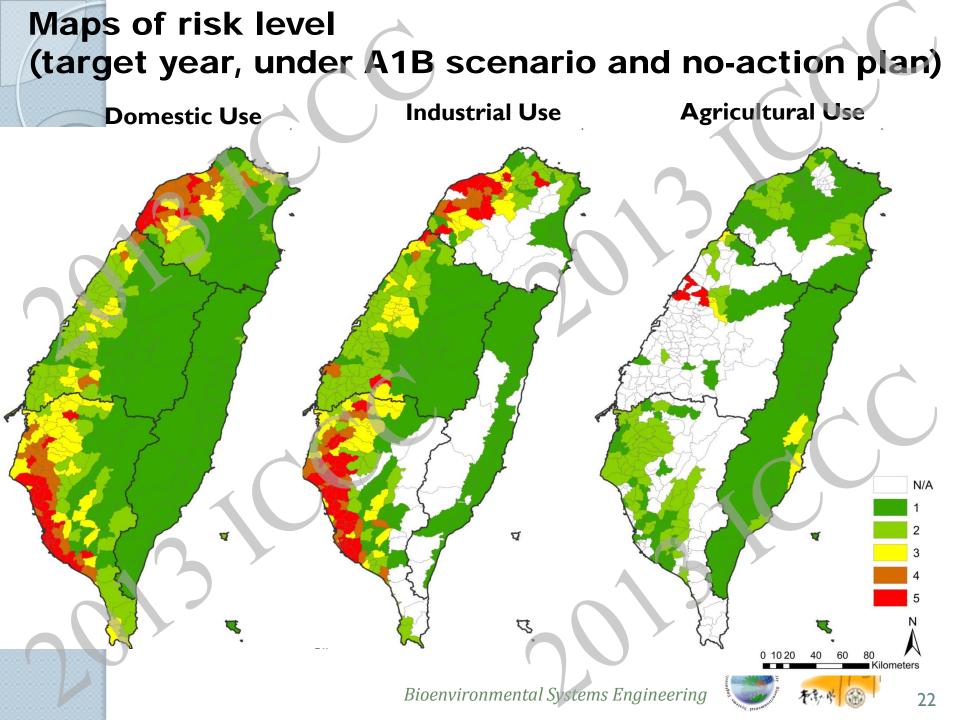
Industrial Use

Maps of hazard level (target year, under A1B scenario and no-action plan)

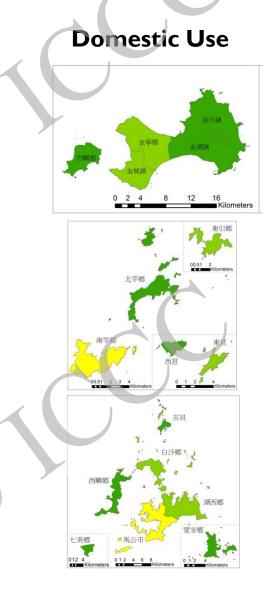
Public Use (Domestic + Industrial)

Agricultural Use

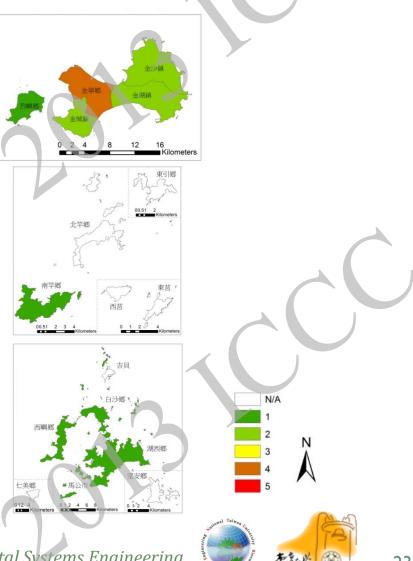

N/A: Farmlands by self-sustaining water sources. Water-use related data are not available.

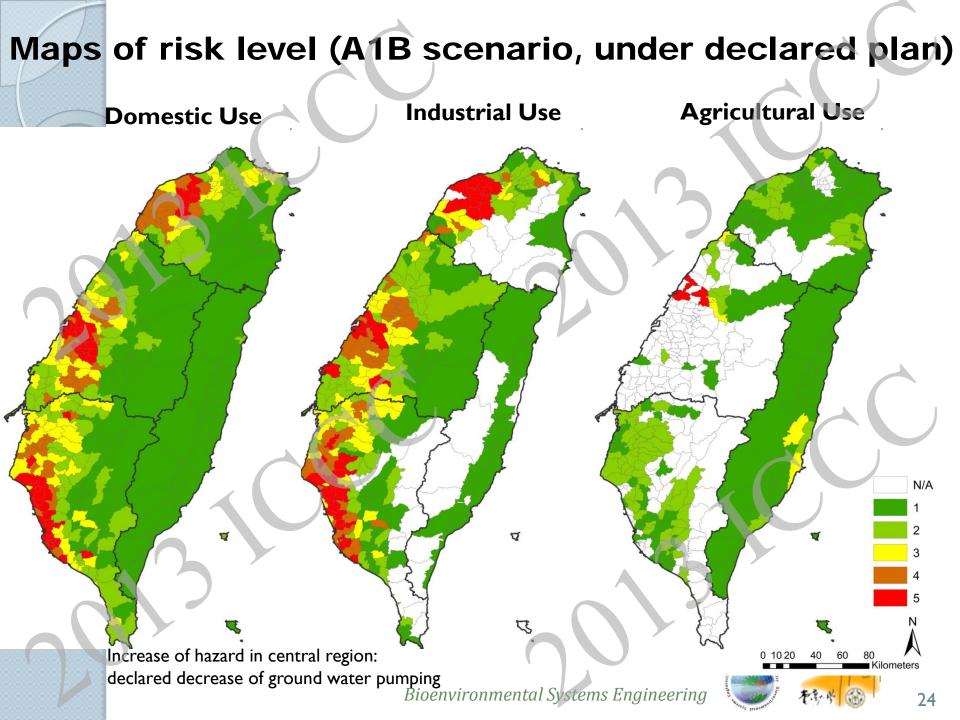

Bioenvironmental Systems Engineering

N/A

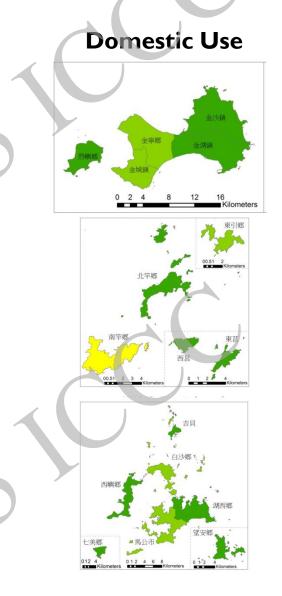

Maps of hazard level (outlying islands) (target year, under A1B scenario and no-action plan)

Public Use (Domestic + Industrial)

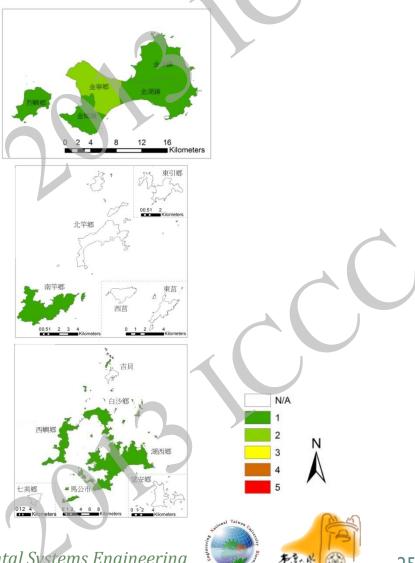




Maps of hazard level (target year, under A1B scenario and no-action plan)



Industrial Use



Maps of hazard level (outlying islands) (target year, under A1B scenario and declared plan)

Industrial Use

Action Plans for Adaptation under Climate Change

Mainframe strategies

After referring to international and domestic adaption experiences and incorporating regional characteristics, the main-frame strategies are setup as follows:

- Northern and Southern Regions:
 - Securing balance between supply and demand under the premise of water resource sustainable management and supply.
- Central Region:

Diversified development and water conservation.

Eastern Region:

Maintaining sustainable low-risk usage of water resources.

•Outlying Islands:

A Risk reduction by water resource development and effective use.

Priority ranking of alternative action plans: Multicritera ordering method

- Alternative plans are defined by regional characteristics

(underground availability, distance to seashore, etc.)

- Shyoulin & Shoufong Townships of Hualien, Hairuei Township of Taitung:
 - Preferred action after ranking:

set up water table well.

Action

Action

#

1

3

					ction	4					
	Criteria	Matrix					Scores	Ranks			
ng:		Compari	son	1	2	3					
		Action	1	0	1	0	1	1			
	Effective- ness	#	2	0	0	0	0	3			
			3	0	1	0	1	1			
	Sustain-	Action	1	0	0	0	0	2			
	ability	#	2	0	0	0	0	2			
1			3	1	1	0	2	1			
			1	0	1	1	2	1			
	Applic- ability	Action #	2	0	0	0	0	3			
			3	0	1	0	1	1			
		Action	1	0	1	1	2	1			
	Urgency	#	2	0	0	1	1	2			
			3	0	0	0	0	3			
	v	1									
Urgen.	∑score Prior.										

Plan	Ē	Sus	Ā	בֿ	∑s	à	
Water table wells	1	0	2	2	5	1	
Desalination plants	0	0	0	1	1	3	
Connect systems] 1	2	1	0	4	2	Systems Engineering

tain

S

Eastern Region

Evaluation of action plans

-Evaluate the action plans by the deficit amended.

Codes of adaptation plan

G: Declared water-resources action plan

S: Water conservation/saving

M: Efficient management

D: Diversified development

Region	Deficit under no-action plan (10 ⁺ CMD)	Type of action plan	Adaptation plan	Amendment amount (10 ⁴ CMD)	Percent amended
	17	Declared action plan	G: declared water-resources management plan	8	47.1%
North		Diversified development	D1: Dredging of reservoir in Taoyuan D1: Construction of reservoir in Taoyuan	9	52.9%
		Declared action plan	G: declared water-resources management plan	13.03 (Miaoli) +10 (Taichuung)	37.3%
		Diversified development	D1:Desalination plant in Changhua	10.99	17.8%
Central	61 66		D2:Water recycling plant in Taichung	9.00	14.6%
		Efficient management	M1:Replacement of water pipes in Yunlin	1.86	3.0%
		Water	S1:Domestic water conservation plan in Taichung	14.26	23.1%
		conservation	S5: Domestic water conservation plan in Yunlin	2.52	4.1%

Evaluation of action plans

-Evaluate the action plans by the deficit amended.

Codes of adaptation plan
G: Declared water-resources action plan
S: Water conservation/saving
M: Efficient management
D: Diversified development

Reg	gion	Deficit under no-action plan (10 ⁴ CMD)	Type of action plan	Adaptation plan	Amendment amount (10 ⁴ CMD)	Percent amended
			Declared action plan	G: declared water-resources management plan	7.73(Chiayi) +26.59(Tainan) +46.56(Kaohsiung) +8.80(Pingtun)	69.6%
			Diversified development	D1:Recycling plant in Anping treatment plant Tainan	3	2.3%
				D2:Desalination plant in Kaohsiung	10	7.8%
				D3: Construction of hydraulic facility downstreams of Ailiaoshi	5	3.9%
So	uth	128.79		M1:Deficit of Chiayi contributed by Yunlin	5.69	4.4%
				M2:Site planning and adjustment of industrial areas in Tainan	14.16	11%
			Efficient management	M3: Site planning and adjustment of industrial areas in Kaohsiung	0.5	0.4%
				M4: Site planning and adjustment of industrial areas in Pingtun	0.76	0.6%
			Declared action plan	G: declared water-resources management plan	0	0%
				D1: Add water-table well in Chinan system of Hualien	0.0845	47%
Ea	ast	0.1784	Diversified	D2: Add water-table well in Chinlun system of Taitung	0.0579	33%
			development	D3: Add water-table well in Shiadashi system of Taitung	0.0197	11%
				D4: Add water-table well in Lidao system of Taitung	0.0163	9%

Bioenvironmental Systems Engineering

30

Evaluation ofaction plans

-Evaluate the action plans by the deficit amended.

Codes of adaptation plan
G: Declared water-resources action plan
S: Water conservation/saving
M: Efficient management

D: Diversified development

Region	Deficit under no-action plan (10 ⁴ CMD)	Type of action plan	Adaptation plan	Amendment amount (10 ⁴ CMD)	Percent amended
		Declared action plan	G: declared water-resources management plan	1.1019	97.4%
Outlying Islands		1.1309 Diversified	D1:Increase desalination capacity in Da-Kinmen system of Kinmen	0.0215	1.9%
		development	D2: Increase desalination capacity in Nankan and Dongyin system of Kinmen	0.0075	0.7%

Evaluation of action plans -Deficit amended by combinations of action plans

Region	Adaptation plan	Combination	Amendment of deficit (10 ⁴ CMD)	Percent amended
North	Declared action plan	G	8.00	47.1%
	Combination 1	G+D1+D2	9.00	100.0%
Central	Declared action plan	G	23.03	37.7%
	Combination 1	G +D1	34.02	55.2 %
	Combination 2	G+D1+D2	43.02	69.8 %
	Combination 3	G+D1+D2+M1	44.88	72.8 %
	Combination 4	G+D1+D2+M1+S1	59.14	95.9 %
	Combination 5	G+D1+D2+M1+S1+S2	61.66	100.0 %
South	Declared action plan	G	89.68	69.6%
	Combination 1	G +D1	92.68	72.0%
	Combination 2	G+D1+D2	102.68	79.7%
	Combination 3	G+D1+D2+D3	107.68	83.6%
	Combination 4	G+D1+D2+D3+M1	113.37	88.0%
	Combination 5	G+D1+D2+D3+M1+M2	127.53	99.0%
	Combination 6	G+D1+D2+D3+M1+M2+M3	128.03	99.4%
	Combination 7	G+D1+D2+D3+M1+M2+M3+M4	128.79	100.0%
East Outlying Islands	Declared action plan	G	0.00	0%
	Combination 1	G+D1	0.08	47.0%
	Combination 2	G+D1+D2	0.14	80.0%
	Combination 3	G+D1+D2+D3	0.16	91.0%
	Combination 4	G+D1+D2+D3+D4	0.18	100.0%
	Declared action plan	G	1.10	97.4%
	Combination 1	G+D1	1.12	99.3%
	Combination 2	G+D1+D2	1.13	100.0%
			ional Taiwag	

Final Remarks

Remarks on results in Eastern Region and Outlying Islands

- The map of risk level for the eastern region under declared water-resources management plan indicates risk levels of lower than 3 for domestic and industrial water use in all areas, indicating no largescale adaptation actions are required.
- Under declared water-resources management plan, the risk level of public use of outlying islands are less than 3, indicating no large-scale adaptation actions are required.

Remarks on results in Eastern Region and Outlying Islands

- Because the amount of water use in Eastern Region is relatively low with respect to other regions, and the groundwater potential is abundant, sustainable use of the groundwater would be the optimal option in this region.
- In the Outlying Islands, the amount of water use is lower than other regions and there is a lack of natural water source, outsourcing possibilities (recycling water, sea water) would be the optimal option in this region.

Remarks on impacts by climate change in Taiwan

- In northern region, water supplies for Taoyuan area are always insufficient due to climate change.
- In central region, deficit remains under the impact of climate change in Miaoli, Taichung and Changhua.
- In eastern region, only small deficit exists due to climate change in small areas in Hualien and Taitung.
- In outlying islands only small deficit exists due to climate change in a few islands in Kinmen and Matsu.
 - Risk of drought in Taiwan under current settings for the target year (2031) is impacted by climate change (under A1B scenario), but the impact is not dramatic.

Remarks on action plans for Taiwan

- The deficits in all water resource regions can be amended with the adaptation plans actualized.
- However, the action plans proposed are based on A1B scenario and a mid-to-low level of socioeconomic growth.
- The scenario and socio-economic growth need to be re-examined periodically, and the action plans revised correspondently.
- Decision makes are recommended to review their strategy, if a climate factor has changed its impact significantly.
- Decision maker should improve the strategy if it does not deliver the benefits they were expected to.

Future works and suggestions

- Integration of concepts of ecosystem services into water resources management as water ecosystem services management under climate change
- Assessment of land use changes impacts on water ecosystem services under climate change
- Connections of ecosystem services, water and food as a cross-sector approach to maintain water and food security under climate change

Thank you for your attention. Oues Hones