Adaptation capacity of coastal disasters due to climate change to strengthen northwest area of Taiwan

Tai-Wen Hsu

Distinguished Professor

Department of Harbor and River Engineering National Taiwan Ocean University

> 2013氣候變遷國際研討會暨成果發表會 2013 International Conference on Climate Change Taipei, Taiwan, January 15-16, 2013

Introduction

Changes of typhoon characteristics due to climate change

increases in the past 14 years (1999 ~ 2012)

The typhoons of Tembin (the left side) and Bolaven (2012)

Introduction

The Impact of climate change on coastal areas

- Wave breaking line migrates shoreward 1.
- The increase of probability of wave overtopping 2.
 - Flooding area becomes larger

Land loss

Introduction

Sea level rise — typical example of wave overtopping

Purposes

1. Construction of the disaster warning system on Miaoli, Hsinchu and Taoyuan Coasts in Taiwan

2. Model development for scenario analysis of environmental factors

3. Impact assessment and indefinite analysis on disasters, and vulnerability and risk estimation on coastal disasters

Location

The location of the southwest area (Miaoli, Hsinchu and Taoyuan Coasts) in Taiwan

Coastal Vulnerability and Risk Assessment

- Definition of Vulnerability and Risk and Their Operating Model
 - Vulnerability

Consisting of exposure, sensitivity and adaptation

Level of risk

► Including <u>vulnerability</u> and <u>hazard analysis</u>

In addition to the physical aspects of the problem, the economic, social and environmental problems are also considered

Risk = V (vulnerability) × H (hazard)

Coastal Vulnerability Relative Research

- United States Geological Survey (USGS) adopted coastal vulnerability assessment, which was proposed by Thieler and Hammar-Klose(1999), to analyze the influence of United States coastal line caused by sea level rises °
 - There are six variables involved in the assessment :
 topography, shoreline change, coastal slope, relative sea level changes, significant wave height and tidal range.

CVI's Formula :

$$CVI = \sqrt{\frac{a \times b \times c \times d \times e \times f}{6}}$$

a= topography , b= shoreline change , c=coastal slope , d=relative sea level changes , e=mean significant wave height , f=mean tidal range \circ

Coastal Vulnerability and Risk Assessment

> Using CEDIM method to create vulnerability and risk

AHP Evaluation on the Index Weighting of Vulnerability Analysis In Northwest Coastal Area of Taiwan

	Level	Domain	Weighting	Index	Weighting	
	Vulnerability	Artificial Facilities	0.328	Relative ratio of seawall length	0.257	
				Relative ratio of seawall height	0.499	
				Relative ratio of tidal gate	0.244	
		Environmental Geography	0.548	Elevation	0.139	
				Slope	0.098	
				Tidal range	0.086	
				Rate of land subsidence	0.226	
				Rate of coastal erosion	0.359	
				Land use	0.093	
		Socioeconomic	0.125	Population density	0.415	
				The relative value of education	0.223	
				The rate for giving support to the elder	0.166	
				Enterprise return	0.196	
PS : Consistency Ratio (CR) = $0.02 < 0.1$						

Coastal Hazard Index

AHP Evaluation on the Index Weighting of Hazard Analysis In Northwest Coastal Area of Taiwan

Level	Index	Weighting
	Deluge flood area	0.384
Hazard Potential	Deluge flood depth	0.271
Hazard Fotentiar	Surge flood area	0.159
	Surge flood depth	0.186

PS : Consistency Ratio (CR) = 0.02 < 0.1

Results - The estimation of sea level trends

In 2039, the prediction of mean sea level rise in northwest coast of Taiwan

Unit: cm

Tidal Station	Base Period	Regression	FFT	EEMD*	Average
*Jhuwei ¹	1976-1991	17.22	3.91	10.11	10.41
*Jhuwei ²	1992-2011	21.81	6.31	17.97	15.36
*Hsinchu	1992-2011	11.23	4.76	11.31	9.10
Taichung Harbor	1980-1999	11.82	4.02	6.76	7.53
Taichung Harbor	1972-2009	7.21	6.33	1.66	5.07

* The data periods of Jhuwei and Hsinchu tidal stations do not match the base period (1980-1999).

Jhuwei tidal station was replaced the location in 1992.

Results - The estimation of sea level trends

In 2039, the prediction of mean sea level rise in northwest coast of Taiwan (by Satellite data)

Unit: cm

Area	Base Period	Longitude and Latitude	Regression	FFT	EEMD	Average
	1992 2009	(121.25°, 25.5°)	6.01	4.17	6.51	5.56
Miaoli,		(121.25°, 25.25°)	5.98	3.95	4.83	4.92
Hsinchu		(121.00°, 25.25°)	5.89	4.25	5.15	5.10
Taoyuan		$(120.75^{\circ} \gtrsim, 25.00^{\circ})$	5.81	3.7	6.01	5.18
		Average	5.92	4.02	5.62	5.19

Results - The environmental factor of run-up and over-topping analysis in northwest coast

• The wave run-up model simulates the wave form evolution with sea level rise from 2020 to 2039 when the 250-years return period typhoon wave attacks the northwest coast.

Results - Subsidence Area

Subsidence Area

- There are no severe subsidence area in Taoyuan, Hsinchu and Miaoli
- In the subsidence areas of Taoyuan, the situation is stabilized

Miaoli, form 2007 to 2009

Results – Vulnerability Analysis

• The result of vulnerability analysis of Miaoli, Hsinchu and Taoyuan coastal area - (AHP weighting)

• The risk map of coastal disaster - (AHP weighting)

• The risk map of coastal disaster

Area difference analysis of present coastal disaster risk and scenario year (2039)

Degree	Area difference (scenario – present) (km²)
1	0
2	0
3	0.52
4	-10.64
5	10.12

Risk Degree: 1 - very low, 2 - low, 3 - medium, 4 - high, 5 - very high.

The analysis result of difference between the present and the scenario

Assessment of coastal vulnerability and disaster risk (scenario)

		Vulnerability	Hazard Factor	Disaster Risk		
F	Region	Scenario (AHP)	Scenario (AHP)	Scenario (AHP)		
	Yuanli Township	3	3, 4	3, 4		
Miaali County	Tongxiao Township	3	3, 4	3, 4		
What County	Houlong Township	3, 4	3, 4	3, 4		
	Zhunan Township	4	3, 4	4		
Usinshu Citu	Xiangshan Dist.	4	3, 4	4		
Hsinchu City	North Dist.	4	3, 4	4		
Usinghu County	Zhubei City	4, 5	3, 4	4, 5		
Hsinchu County	Xinfeng Township	3, 4	3, 4	3, 4		
	Xinwu Township	3, 4	3, 4	4		
Transfer	Guanyin Township	4	3, 4	4		
Taoyuan County	Dayuan Township	4	3, 4	4		
	Luzhu Township	4	3, 4	4		
Degree: 1 - ve	Degree: 1 - very low, $2 - low$, 3 - medium, $4 - high$, 5 - very high.					

Results - Vulnerability Analysis - Consider adaptive strategies

- Adaptive strategies Increase the seawall to 6 meters in height; reduce the erosion rate (60% reduction)
 - <u>A decrease of one level</u>: Xinwu Township in Taoyuan and North and Xiangshan Dist. in Hsinchu

Results - Risk assessment - Consider adaptive strategies • The risk map of coastal disaster — Consider Adaptive strategies Area difference analysis of present coastal disaster Degrees risk with/without adaptive strategies 2 3 Area difference Degree 4 (adaptation / present) 圖例 圖例 (km^2) 風險度_現況_AHP 虱險度 調適 AHP 非常低 1 0 非常低 低 低

非常高

km

50

25

Risk (present & AHP weighting) Risk (adaptation & AHP weighting)

Risk Degree: 1 - very low, 2 - low, 3 - medium, 4 - high, 5 - very high.

0

2

3

4

5

0

2.20

-2.20

0

山

非常高

km

50

25

- 1. In respect to the trend estimation of sea level rise, Three different numerical methods were used to analyze the change of sea level rise in northwest coastal area of Taiwan. The result shows that the sea level rises are in the range of 4.02 to 11.82 cm from 2020 to 2039.
- 2. For the vulnerability of coastal hazard under climate change and risk assessment, this project studies on the economic lost of coastal area hazard, land use and the socioeconomic environmental investigation.

- 3. Based on the present coastal environment and protective facilities in southwest areas of Taiwan, this paper proposes different options to deal with the impacts of future climate change:
 - **1)** *Impacts from sea level rise.* (a) Improve the monitoring techniques and data quality. (b) Enhance the protective facilities. (c) Assess the possibility of resident evacuation.
 - 2) Impacts from sea dikes safety. (a) Based on the sea states estimation under different return periods, the safety of some dikes should be inadequate in the future. To increase the height of dike or to enhance the rubble mound could be improve the situation. (b) Assess the possibility of the second sea dike.

- 3) Impacts from coastal flooding. (a) Carry out the performance of "Regulation Project of Flood-prone Areas".
 (b) Improve the drainage system in coastal low-lying zones.
 Carry out the river dredge. (c) Arrange the pumping stations for the potential areas.
- 4) Impacts from vulnerability of coastal zones. (a) Carry out the performance of "Regulation Project of Flood-prone Areas".
 (b) Review the design criteria of embankment. (c) Enhance the emergency operation system.

4. This project is lack of the sea meteorology data (typhoon wind field, typhoon wave, surge, sea level rise etc.) from such as NCDR etc.. The breaking wave and the wave are estimated by the available data. If NCDR can provide the data, we suggest to estimate again for the consistence.