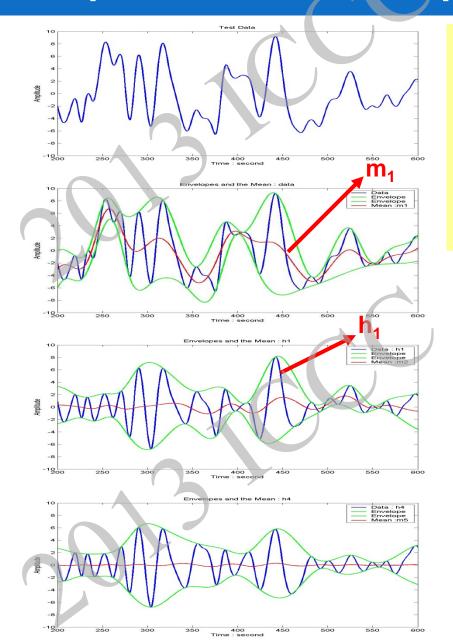
台灣氣候變異與年代際變化分析


卓盈旻 盧孟明 林昀靜 中央氣象局

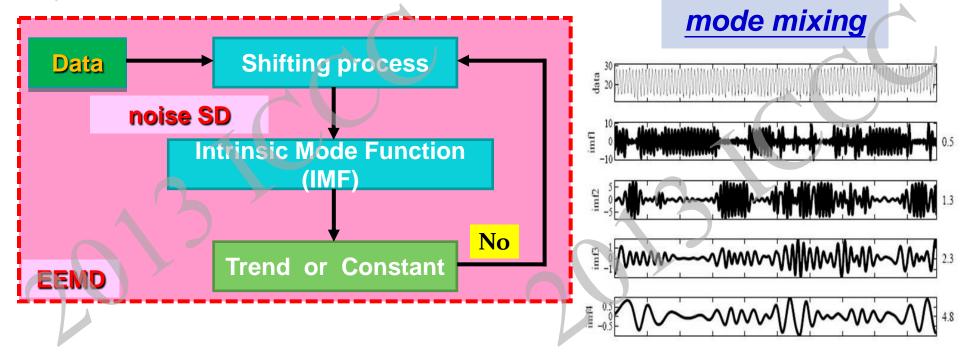
TCCIP成果發表會 2013/01/17

Introduction

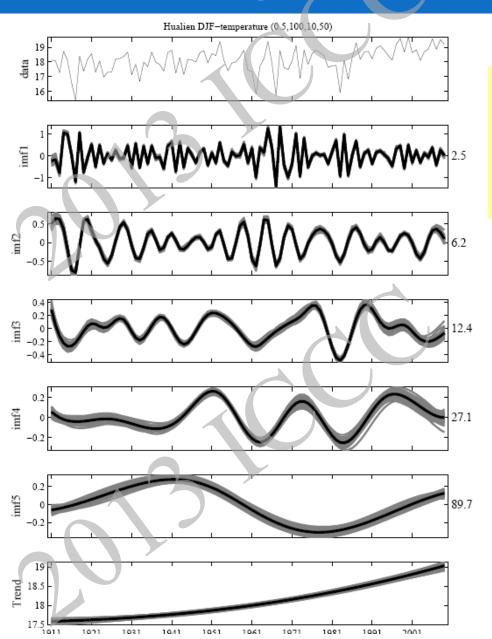
- ◆以往分析資料的長期趨勢都習慣採用線性分析方法來表示,但是此方法是基於資料為線性(linear)和平穩(stationary)狀態的假設之下。然而氣候是非線性和非平穩變化的系統,線性分析方法無法完全表現應有的變化,因而成為了解氣候變化原因的障礙。
- ◆ 整體平均經驗模態分解法(EEMD)解出的長期趨勢變化是將不符合趨勢定義(具有類似週期變化)的訊號濾除乾淨之後獲得的殘餘項,因此可把「趨勢」和「週期性」變化清楚分離,有助於瞭解資料特性,或進一步詮釋時間序列的變化。
- ◆ EEMD具有依照時間序列資料的特性,分解出不同時間尺度的 變化特徵,因此本研究利用EEMD分解法重新分析台灣溫度和 雨量的長期變化。

Empirical Mode Decomposition, EMD

經驗模態分解法:(Huang et al., 1998) 根據原始資料的變化特性,將資料 從高頻到低頻分解成多個內建模態 函數分量(IMF)和一個殘差項。 「各個時間尺度的IMF代表不同的能 量及頻率。

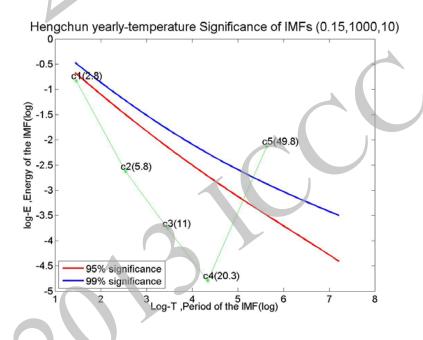

Shifting process	<u>EMD</u>
$data - m_1 = h_1$	$data - IMF_1 = r_1$
$h_1 - m_2 = h_2$	$r_1 - IMF_2 = r_2$
$h_{(k-1)} - m_k = h_k$	$r_{(n-1)} - IMF_n = r_n$
$h_k = IMF_1$	r _n = trend

n = log₂N N: data number

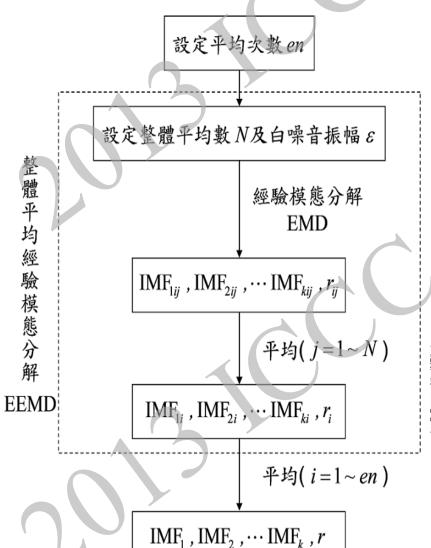

Ensemble Empirical Mode Decomposition, EEMD

整體平均經驗模態分解法:(Wu and Huang, 2009)

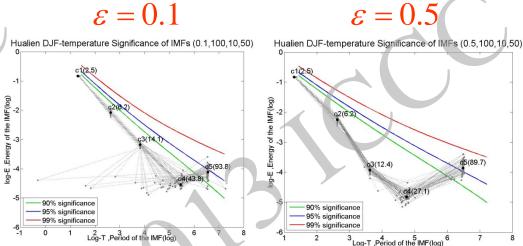
- > 改善混模(mode mixing)的問題
- 「將原始資料加上一組隨機白噪音(white noise)來消除雜訊影響
 → noise SD
- 「經由轉移過程(shift process)進行EMD分解→ shifting number 「重複上述步驟多次,對多次分解結果平均→ ensemble number



Ensemble Empirical Mode Decomposition, EEMD


顯著性檢定: (Wu and Hung, 2009)

▶幫助判斷各個IMF是屬於有意義 的頻率分量,或僅只是單純的 噪音而已。



Flow Chart

整體平均經驗模態分解

選擇50次EEMD分析結果有一致變化 的白噪音振幅作為加入此資料的白噪 音振幅,若每個白噪音振幅的50次結 果都不一致,則將此資料視為不適合 利用EEMD分析。

Data and Method

❖ 測站資料

台北(TP)、台中(TC)、台南(TN)、 恆春(HC)、花蓮(HL)、台東(TT)

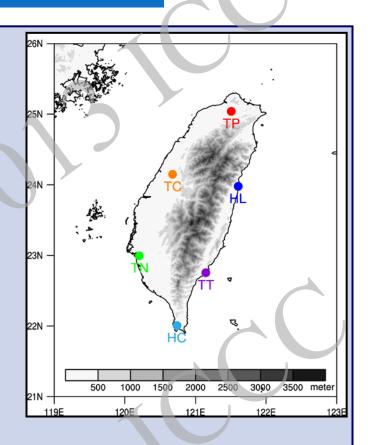
台灣地區:6個測站資料代表

溫度、雨量

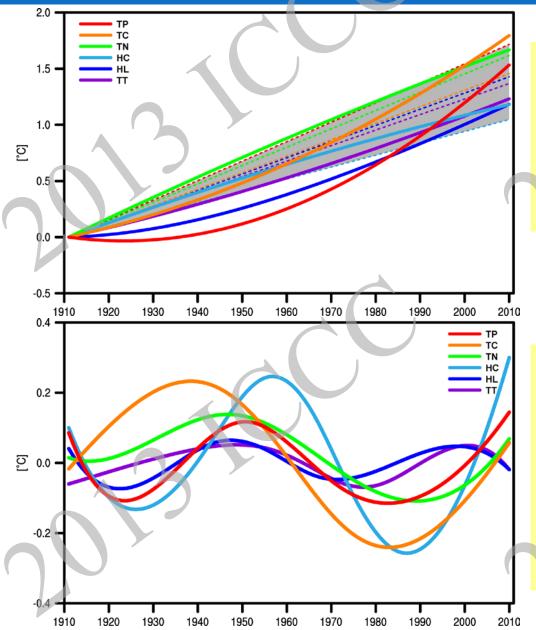
❖ 分析時間

1911~2010年 年平均、季平均(每3個月的滑動平均)

❖ 分析方法


整體平均經驗模態分解法 (EEMD)

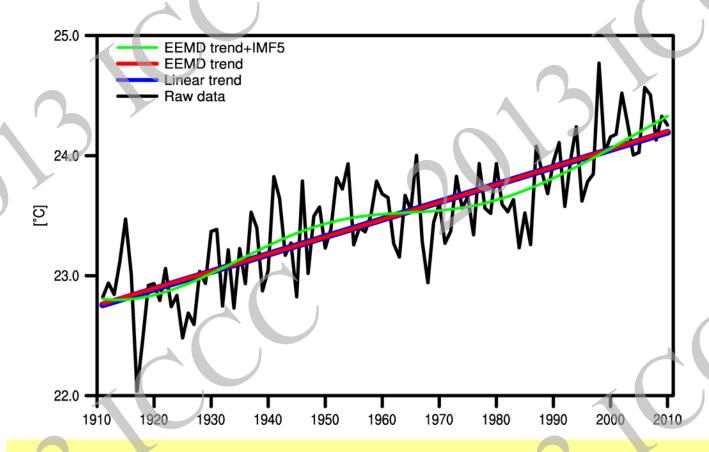
noise SD: 0.01~0.5 (挑選適合資料的白噪音振幅)


shifting: 10

ensemble: 100

EEMD: 50

Taiwan Annual Mean Temperature


- ▶ 6個測站都有逐漸增溫的趨勢, 增溫現象並非如線性趨勢一樣, 維持相同的速率穩定增加。
- 》大部分測站在1970年之前EEMD 趨勢變化小於線性趨勢,但在 1970年之後的增暖速率大於線性

▶ 大部分測站有著相似的週期波動變化。

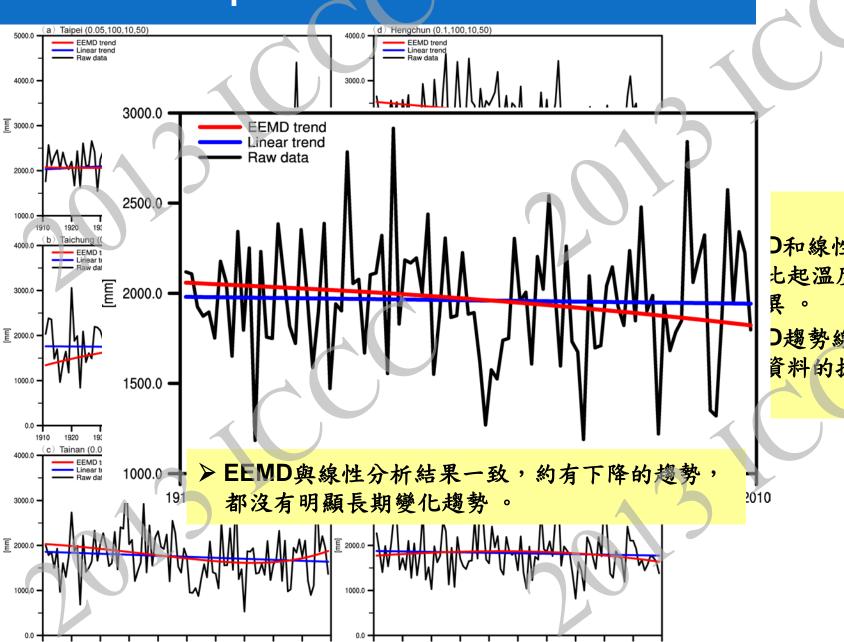
TP	TC	TN	HC	HL	TT	
51.4	94.3	86.3	50.1	45.4	55.1	

▶ 氣溫變化除了非線性的上升趨勢 之外,還包含多年代的週期波動 變化在內。

Taiwan Mean Temperature - EEMD & Linear

- ▶全島年平均溫度呈現持續上升的趨勢,EEMD趨勢變化和線性趨勢非常接近。
- ▶全島溫度的變化包含一個約51.9年的年代際週期波動在內。
- ▶台灣氣溫變化為趨勢變化疊加上週期振盪的結果。

EEMD IMF1~5 period — Temperature

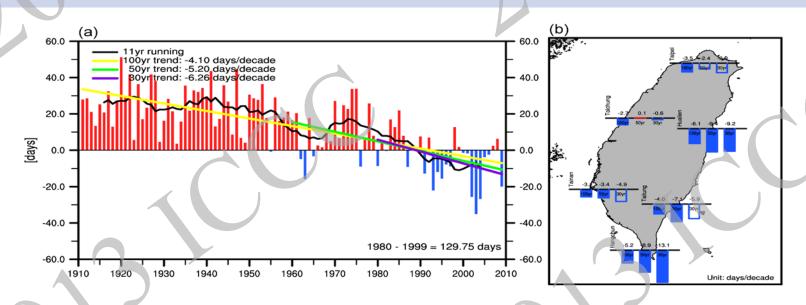

9	5	%

	•		<u> </u>				_					•	
	2.9	2.8	2.7	2.9	2.8	2.6	2.7	2.7	2.6	2.6	2.7	2.6	2.7
	6.7	5.9	5.6	5.9	5.6	5.6	5.9	5.3	5.9	5.3	5.6	6.3	6.3
Taipei	12.5	11.1	12.5	11.1	9.1	10	10	10	10	11.1	11.1	11.1	12.5
	40.9	22.4	32	28.5	31.6	27.4	26	25.5	31.6	32.5	30.2	32.4	34.8
	59.8	81.4	50.8	46.9	48.3	79.4	51.3	59.3	90.5	61.4	49.9	91.5	51.4
	2.8	2.8	2.6	2.8	3	2.9	2.7	2.5	2.8	2.6	2.8	2.6	2.9
	5.9	5.3	5.6	5.6	5.9	6.7	6.3	6.3	5.9	5.3	5.6	5.6	6.3
Taichung	12.5	11.1	14.3	10	12.5	10	12.5	11.1	9.1	12.5	11.1	10	12.5
	38.1	22.9	34.3	23.1	34.4	28.4	27.3	33.2	30.5	30.5	30.6	20.1	37.7
	52.6	50.3	49.6	90.7	78.7	72.1	94.4	92.4	67.4	98.4	92.3	52	94.3
	2.8	2.8	2.8	2.6	2.9	2.9	2.6	2.8	2.7	2.7	2.7	2.6	2.9
	6.3	5.6	6.3	5.3	5.9	5.3	5.6	5.6	5	5.3	5.6	5.9	6.3
Tainan	12.5	10	12.5	11.1	10	11.1	10	10	11.1	10	12.5	14.3	14.3
	26.7	22.8	38	22	22.1	33.6	35.9	30.1	32.7	30.4	30.8	33.2	31.2
	93.9	50.5	50.4	50.6	50.2	95.8	82.2	50.8	85.9	97.4	92.1	88.1	86.3
	2.7	3	2.8	2.8	2.7		2.9	2.9	2.6	2.6	2.6	2.7	2.8
	5	5.3	5.3	5.3	5.9		5.3	6.7	6.3	5.6	5.6	5.9	5.9
Hengchun	11.1	10	11.1	12.5	12.5	*	11.1	10	10	11.1	11.1	12.5	11.1
	26.4	29.7	30.5	38.7	33.8		24.3	28.4	28.8	23.8	28.2	26.7	21.6
	91.6	86.4	94.7	53.4	93		49.9	50.3	49.9	52.1	91.4	91.3	50.1
	2.9	2.9	2.6	2.8	2.9	2.8	2.8	2.7	2.6	2.8	2.9	2.5	2.6
	6.7	6.3	5.3	5.3	5.6	5.9	6.3	6.3	5	5.9	5.9	6.3	5.6
Hualien	11.1	12.5	11.1	10	12.5	12.5	11.1	11.1	10	12.5	12.5	14.3	12.5
	27.9	27.7	26	22.3	22.9	29.5	28.1	27.5	24.8	28.9	29	45.9	27.2
	54.6	63.9	46.7	94.8	62.1	91	51.1	54.5	58.3	49.5	67.4	96.9	45.4
	2.9	3.1	2.9	2.9	2.9	3	2.9	2.9	2.7	2.6	2.6	2.7	2.8
	5.9	6.3	6.7	5.9	5.6	5.9	5.9	6.3	5.6	5.9	5.6	5.9	5.9
Taitung	12.5	11.1	12.5	12.5	11.1	12.5	11.1	11.1	10	11.1	12.5	14.3	11.1
	35.6	45.6	29.6	32	28.6	28.5	31.2	22.6	23.3	23.6	29.9	38.7	43.1
	50.3	68.1	51.4	85.1	88.7	83.4	52.1	62.1	80.6	69.5	85.4	98.6	55.1
	2.8	2.8	2.6	2.9	2.9	2.9	2.8	2.6	2.6	2.7	2.6	2.6	2.6
	6.3	6.3	5.3	5.3	5.9	5.9	5.3	5.6	5.9	5.3	5.3	5.9	5.6
Taiwan	11.1	11.1	11.1	11.1	12.5	11.1	10	10	11.1	11.1	11.1	11.1	11.1
	27.9	22.4	24.1	30	35	28.6	24.1	27.7	31	23.8	29.3	28.9	27.4
	92	50.6	47.9	55.8	47.9	90.9	63.3	70.6	89.4	88.6	69.9	91.1	51.9

SON

OND

Taiwan Precipitation - EEMD & Linear

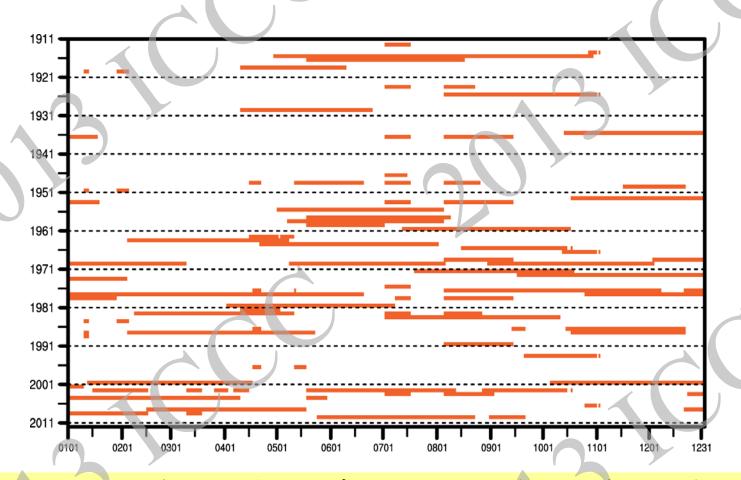


D和線性的分析 七起溫度有較大 異 。

D趨勢線較接近 資料的振幅變化

Introduction

- The total annual rainfall in Taiwan does not show clear increasing or decreasing trends during the past century.
- The past 100 years showed the annual number of rainy days has decreased significantly.

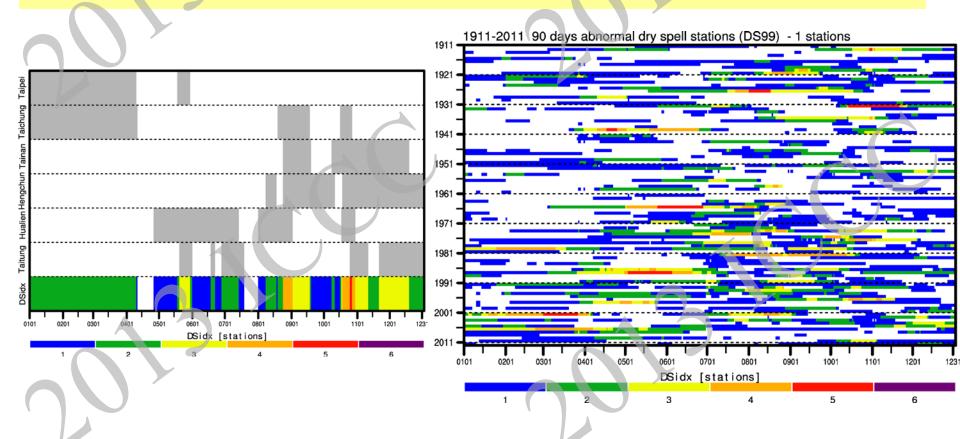

Has the extremely prolonged dry spells become more frequent in the warming climate?

Analysis Procedure

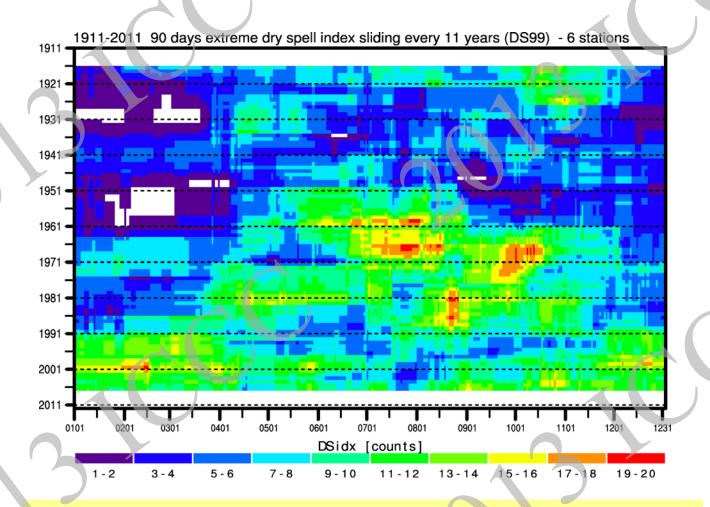
- Define the extremely prolonged dry spells at a station on daily basis.
 - Apply a sliding 90-day window to the daily precipitation data of 1951-2010 (N=60) and count the lengths of the dry spells within the 90-day window.
 - Establish the 60-year dry-spell database with the date representing the last day of the 90-day window.
 - The probability distribution of the dry spells with the length (DS) from 1 to 90 days can be plotted.
 - A dry-spell threshold (DS99) of the extremely prolonged dry spells are defined as the exceedance probability of the threshold is less than 1%.

 Probability Pensity Function

An example of the extremely prolonged dry spells

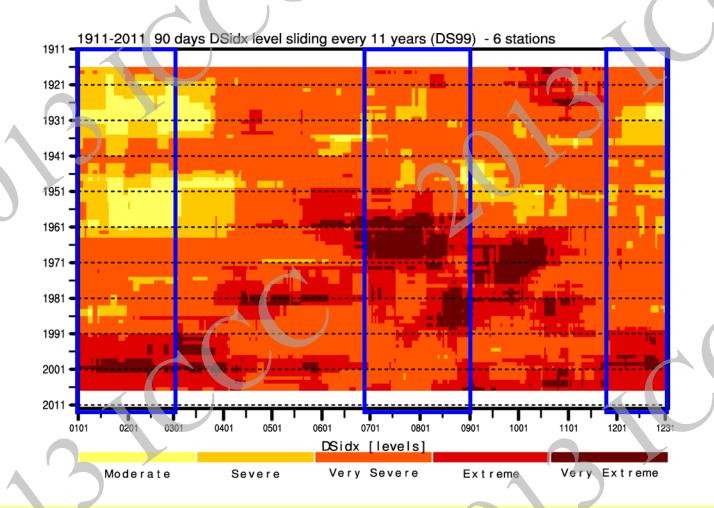


台北測站在1960年代之後,異常乾期發生頻率有增多的現象。極端乾期主要發生在1960年代至1980年代之間和2000年之後

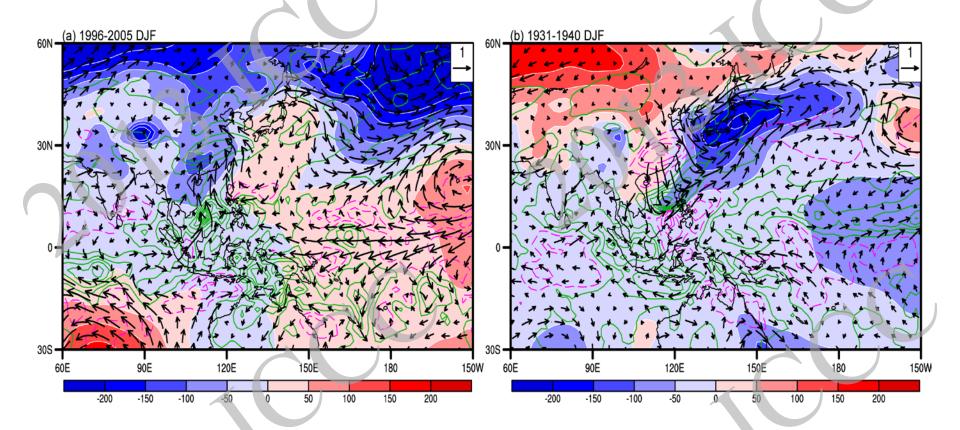

Design daily dry spell index DSidx

represent the extremity of the overall dry spells in Taiwan

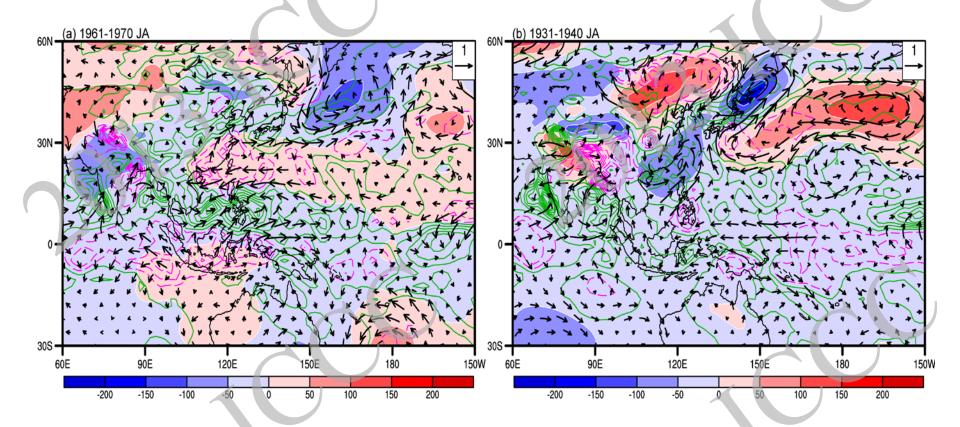
DSidx = the total number of stations that show extremely prolonged dry spells



Sum of DSidx Sliding Every 11 Years


1911~2011年每天的DSidx指數每11年累加的台灣極端乾期指數(DSidx)分布。

Five Levels Dry Spell Extremity – DSidx_11yr


1911~2011年每11年滑動累加的台灣極端乾期指數 (DSidx) 依嚴重程度 區分為五種不同極端乾期類別的變化。

More and Less Dry Spells Extremes – Winter

冬季(12~2月)極端乾期的環流場距平變化, (a)為極端乾期頻繁時期(1996~2005年), (b)為發生頻率較少時期(1931~1940年),流線為950hPa風場,顏色為海平面氣壓的變化,等值線為雨量距平,綠色表示為雨量正距平,粉紅色為負距平。

More and Less Dry Spells Extremes – Summer

夏季(7~8月)極端乾期的環流場距平變化,(a)為極端乾期頻繁時期(1961~1970年),(b)為發生頻率較少時期(1931~1940年),流線為950hPa風場,顏色為海平面氣壓的變化,等值線為雨量距平,綠色表示為雨量正距平,粉紅色為負距平。

Summary

- ◆本研究採用整體平均經驗模態分解法(EEMD)分析1911~2010年臺灣6個測站溫度和雨量的長期變化趨勢,發現臺灣年平均溫度有顯著上升趨勢,上升幅度約1.4度,和線性趨勢變化接近。另外,平均溫度變化存在一個50年週期的年代際振盪,顯示臺灣氣溫變化為上升趨勢疊加上50年波動的結果。臺灣年總雨量呈現減少的趨勢,與線性結果一致,但EEMD趨勢線較接近原始資料的變化,且都沒有明顯長期變化趨勢。
- ◆根據連續不降雨日數發生機率建立一個臺灣極端乾期指數 (DSidx),利用該指數分析臺灣過去百年異常偏乾現象,結果發現臺灣極端乾期有年代際變化,在1960年之後發生頻率明顯增多。1960~1980年代主要發生在夏、秋季,11~4月冬半年在1990年之後明顯增加。冬季極端乾期主要發生在東亞冬季季風減弱的狀態下,夏季則是受到西太平洋副熱帶高壓向西增強的影響。