

國科會氣候變遷推估與資訊平台建置計畫成果發表會

氣候變遷下颱風季節降雨特性 與水文頻率分析

蘇元風¹ 江申¹ 鄭兆尊¹ 劉俊志¹ 鄭克聲² 陳永明¹ ¹國家災害科技防救中心 ²國立台灣大學生物環境系統工程學系 2013.01.17

Taiwan Climate Change and Information Platform (TCCIP) project /B, WRA data Team1 Climatology East Asia Analysis and Taiwan **Observation** area Climate projection Team2 Downscaling IPCC, MRI/JMA, ECHAM5.... GCM Information Climate Platform projection Team3 Impact Assessment

動力降尺度資料

- 由日本氣象廳所屬的日本氣象研究所 (Meteorological Research Institute, MRI)產製之20公里高解析度動力降尺度資 料,由TCCIP計畫以WRF模式降尺度為5公里 高解析度資料(自此後簡稱為WRF),資料的 時間尺度為小時(hourly data)。
- ・基期:1979-2003
- ・近未來:2015-2039
- •世紀末:2075-2099

WRF動力降尺度vs. IPCC統計降尺度

- ・時資料
 ・可呈現極端事件
 (颱風)特性
 - ・單一模式

動力降尺度

統計降尺度

颱風季節降雨特性

- ·過去探討氣候變遷對降雨特性影響之相關
 研究,多以年降雨量、季節降雨量或月降
 雨量為研究對象。
 - 許多水資源工程規劃、設計,或是水庫供 水調度而言,事件降雨特性至關重要。

	衣 4.43 百得地 四不不力 阵响 星以 愛比 值									
			美國			日本			歐洲	
		GFE	DL-CM2.1	A1B	MRI-C	GCM2.3.	2 A1B	MPIN	I-ECHAN	15 A1B
	月份	短	中	Æ	短	中	長	短	4	ę
• 插率分析	1	1.16	0.89	0.67	1.01	0.90	1.01			
287 1/1	2	0.95	0.76	0.53	0.83	0.68	0,65	動	カ隆	·尺度
・逕流演算	2	0.7	時雨	向量	資料	2 8 3	15	э н , (例M	RI)
•入庙沟景石却	6	0.88	0.89	0.84	1.18	1.22	1.47			
八半加里頂和	7	1.09	1.20	1.15	1.15	1.10	1.08	0.84	1.01	0.98
	8	1.13	1.18	1.34	1.14	1.13	1.15	0.80	1.08	1.15
• 水利工程設施規劃	9	0.97	1.06	1.02	1.21	1.27	1.46	1.14	1.27	0.93
	10	0.66	0.77	0.99	1.12	1.56	1.59	0.85	0.85	0.97
	11	1.01	0.83	1.09	0.85	0.75	0.94	0.81	0.93	5 <mark>0.63</mark>
	12	0.83	1.04	1.01	0.94	0.98	0.81	1.01	1.26	0.89
	~ 資料	來源:	中興工程	(2010)						

- 測站資料 - 時間:1979-2003時雨量∞∞™
 - 站載:84站

WRF

- 空間解析度: 5km
- 網格數:1566個
- 1979-2003
- 2015-2039
- 2075-2099 時雨量

平均延時

120.5

Average Duration (nrs)-Typ-Far

25.0

24.5

24.0

23.5

23.0

22.5

22.0

120.0

40

20

0

-20

-40

121.0

改變率

所有網格

- 由1187個雨量測站
- 資料長度為50年以上
- 空間解析度為5公里

年最大值序列之Bias correction

- 以累積機率函數對應法(CDF matching method)
- 僅針對年最大值序列

MRI與WRF降尺度於水文頻率分析

比較兩資料經過Bias correction之後於水文頻率分析之差異

觀測資料網格化

	Prep.	Average temp.	Highest temp.	Lowest temp.
Daily data				
1Km X 1Km	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5Km X 5Km	O	\bigcirc	\bigcirc	\bigcirc
Monthly data				
1Km X 1Km	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5Km X 5Km	\bigcirc	\bigcirc	\bigcirc	\bigcirc
5Km X 5Km	0	0	0	

TCCIP_temp_1km

已由TCCIP團隊產製完成。

16

 1. 1Km X 1Km and 5Km X 5Km mesh precipitation and temperature data
 2. From 1960~2009, daily and monthly data

網格化資料之限制

Bias correction with MRI, WRF data by using observation data

Since the MRI and WRF data is different to the observation data, statistical consistence after the bias correction procedure

 $\begin{array}{l} MRI(P)_{percentile \ x} \ /Obs.(P)_{percentile \ x} = \ E_{percentile \ x} \\ Bias \ corrected \ NF_{percentile \ x} = MRI(NF)_{percentile \ x} \ / \ E_{percentile \ x} \\ Bias \ corrected \ \ F_{percentile \ x} = MRI(F)_{percentile \ x} \ / \ E_{percentile \ x} \end{array}$

E_{percentile x} :bias correction factor P=present(1975-2003) NF=Near Future (2015-2039) F=Future (2075-2099)

Comparison of the FA results between ground gauging station and meshed daily precipitation data

年最大值於未來與基期比值-MRI(20km)

R.P. 100 year, 1 day precipitation, PT3

年最大值於未來與基期比值-WRF(5km)

R.P. 100 year, 1 day precipitation, PT3

WRF(5km)與MRI(20km)比較

R.P. 100 year, 1 day precipitation, PT3

- · 整體而言, WRF資料對於颱風季節降雨之統 計特性能大致上能掌握其空間分布特性。
- ·於基期與觀測資料比較時,發現<u>平均延時</u>
 較短、總降雨量較低的現象,顯示出WRF資
 料於降雨量的模擬仍有改善的空間。
- 在未來與基期的相對比較上,世紀末於台中、南部山區地區長延時降雨事件的降雨
 延時縮短,但總降雨量增加的情形,突顯出世紀末降雨強度增加的警訊。

- WRF(5km)相較於MRI(20km),更可反映出 地形效應,可呈現出山區的強降雨區。
 於近未來的頻率分析結果顯示,中部地區為增加的趨勢,北部與南部地區則為 減少的趨勢。
- ·世紀末的頻率分析結果顯示,除了北部
 ·地區之外,中部與南部地區100年頻率年
 的年最大降雨量為增加的趨勢。

- ·動力降尺度的資料於水文應用上具相當高的實用價值。
- 目前僅有MRI的一組動力降尺度資料,僅提供以單一模式的結果仍不足以供決策參考, 未來將增加另外兩組動力降尺度資料進行 分析。

