2014 TCCIP-IWCC, Hualien, Taiwan

Multi-model Detection and Attribution of Extreme Temperature Changes

Seung-Ki Min

School of Environmental Science & Engineering Pohang University of Science & Technology (POSTECH)

*Contributions: Xuebin Zhang (Environment Canada), Francis Zwiers (PCIC, Univ. Victoria), Hideo Shiogama (NIES), Yu-Shiang Tung (Nat'l Taiwan Normal Univ.), Michael Wener (LBL)

Outline

Introduction

- Detection & Attribution (D&A)
- Extreme temperature changes
- Data: Observations and CMIP3
- Methods: Optimal fingerprinting
- D&A results
 - Global and continental means
 - Sub-continental regions
- Conclusions and discussion

Detection & Attribution (D&A)

- Detection
 - Demonstrating that an observed change is significantly different from natural internal variability
- Attribution
 - Isolation of cause(s) of the detected change
- Possible causes
 - Anthropogenic: Greenhouse gases (GHG), sulphate aerosols, ...
 - Natural: Solar and volcanic activities

Human Influence on Climate: Brief History of D&A Researches

- 1996 Atmospheric thermal structure (Santer et al. Nature)
- □ 1999 Surface air temperature (Tett et al. *Nature*)
- 2000 Surface air temperature (Stott et al. Science)
- 2001 Ocean heat content (Barnett et al. Science)
- 2003 Sea level pressure (Gillett et al. Science)
 - North American temperature (Karoly et al. Science)

Tropopause height (Santer et al. Science)

- **2004** European heat wave (Stott et al. *Nature*)
- I 2006 Tropical sea surface temperature (Santer et al. PNAS)

Recent Advances in D&A Beyond Temperature: Precipitation and Moisture

5

Zonal mean precipitation (Zhang et al. 2007, *Nature*)

Surface humidity (Willett et al. 2007, Nature)

Atmospheric Moisture Content (Santer et al. 2007, PNAS)

ANTHRO fingerprint (20CEN runs)

SSM/I total linear change (1988-2006)

Last year of L-length linear trend in signal Z(t)

Recent Advances in D&A

Smaller Scales and More Impact-Relevant

6

Polar warming

(Gillett et al. 2008,

Nature Geo)

Observed Extreme Temperature Trends 1951-2000

→ Overall warming trends with stronger amplitudes in cold extremes

This Study...

***** Targets

- Detecting human influence on extreme temperature changes at "regional" scales for 1951-2000
- Using more model and longer samples to reduce uncertainty

Data

HadEX observations

• Global land-based climate extremes datasets: gridded (3.75° lon \times 2.5° lat) (Alexander et al. 2006, JGR)

Models - 12 CMIP3 models

- ANT (anthropogenic, 8 models, 27 runs)
- ALL (natural plus anthropogenic, 8 models, 26 runs)
- CTL (preindustrial control, 10 models, 158 50-yr chunks)
- Data processing
 - Standardize probability index (PI) on the original grids
 - Interpolate PI onto the same HadEX grids $(3.75^{\circ} \times 2.5^{\circ})$
 - Apply space-time observational mask

Variables & Domain

10

Analysis variables

 Annual extremes of coldest night and day (TNn, TXn), warmest night and day (TNx, TXx) for 1951-2000

Spatial domains

- Global mean
- 5 continental mean (N. America, S. America, Europe, Asia, Australia)
- 16 sub-continents (based on Giorgi's domain)

Based on Giorgi and Francisco (2000)

Optimal Fingerprinting

⁽Weaver & Zwiers 2000)

- **Observations Y are regressed onto fingerprints X as Y = X\beta + \epsilon**
- Fitted by total least squares (Allen and Stott, 2003)
- Fingerprints X estimated from multi-model mean, internal variability ε estimated from control simulations
- → Detection: 5-95% range of scaling factor β > 0

Multi-Model PI Trends

→ ANT warming offset by NAT cooling

Global Mean Time Series Cold Extremes

ANT: warming, NAT: cooling, ALL capture observed pattern → Model under-simulate observed warming of cold extremes

Global Mean Time Series Warm Extremes

ANT: warming, NAT: (stronger) cooling (in summer)
 → ALL reproduces observed changes with similar amplitude

D&A Results for Global/Continental Means: Cold Extremes

Scaling factors β : Best estimate (mark), 5-95% uncertainty range (error bars)

D&A Results for Global/Continental Means: Warm Extremes

Scaling factors β : Best estimate (mark), 5-95% uncertainty range (error bars)

Regional-Scale D&A Results: Warmest Night (TNx)

16 sub-continental regions

17

Conclusions

- Statistical comparison between observed and simulated extreme temperature changes
 - Four annual extreme indices coldest night and day (TNn and TXn) and warmest night and day (TNx and TXx) for 1951-2000
 - Using an optimal fingerprinting technique
- Anthropogenic signal (ANT) detected for global and northern continental means
 - For all four indices, albeit less robustly for TXx
 - Supporting previous studies based on different methods and models
 - ANT separable from natural forcing (NAT) influence at the global scale and to a lesser extent at continental scales

Conclusions (continued)

ANT detected at sub-continental scales

- less frequent detection due to increased noise
- ANT detected more in TNx and TNn in many subregions
- ANT separable from NAT over several subregions for TNx

Combined detection analysis

- daytime (TX) and night-time (TN) temperature extremes
- Some improvement in detectability => potential applicability to a multi-variable assessment

Discussion

Observation-model discrepancy - warming of cold extremes (TNn and TXn) is underestimated by the models on global to sub-continental scales in a systematic manner

Large uncertainties in the regional detection

- Possible influences from missing processes such as land cover changes (Portmann et al. 2009; Avila et al. 2012)
- Influence of natural climate variability (AO, ENSO, PDO...) on depending on regions and seasons seasons (Brown et al. 2008; Kenyon and Hegerl 2008; Alexander et al. 2009)
- Updated analysis is ongoing using new observations (HadEX2) and CMIP5 multi-model datasets

Thank You!

Min, S.-K. and Co-authors (2013) Multi-model detection and attribution of extreme temperature changes, *J. Climate*, 26, 7430-7451.

Multi-Model Data: CMIP3

Model name	ANT	ALL	CTL [# of 50-yr chunks]
CCSM3	3	1	-
CGCM3(t47)	5	-	20
CGCM3(t63)	1		10
CSIRO-Mk3.0	1		6
CSIRO-Mk3.5	2	-	12
ECHAM5/MPI-OM	3	3	10
ECHO-G	3	3	6
GFDL CM2.0	-	3	10
GFDL CM2.1	-	3	10
MIROC3.2(med)	10	10	72
MIROC3.2(hi)	-	1	2
PCM	-	2	-
Total	8 models 27 runs	8 models 26 runs	10 models 158 chunks

Probability-based Index (PI)

- Convert time series (1951-2000) of annual temperature extremes
 (T) into probability-based index (PI) ranging from 0-1
- (1) Fit generalized extreme value (GEV) distribution to 50 samples of annual extremes using maximum likelihood method (Kharin and Zwiers, 2005)

$$\underbrace{\mathsf{CDF}}_{F(x;\mu,\sigma,\xi)} = \begin{cases} \exp\left[-\exp\left\{-\frac{x-\mu}{\sigma}\right\}\right], & \xi=0\\ \exp\left[-\left\{1+\xi\frac{x-\mu}{\sigma}\right\}^{-\xi^{-1}}\right], & \xi\neq 0, \quad 1+\xi\frac{x-\mu}{\sigma} > 0. \end{cases}$$

 μ , σ , and ξ : location, scale, and shape parameters (fixed with time)

(2) Each annual extremes T is converted to PI by evaluating the corresponding fitted CDF at the value of that annual extremes (Min et al. 2011)

➔ at grid-point base

Pagional	Continent Regio		TNn TXn		Xn	TNn+TXn		T	٧x	x TXx		TNx+TXx		
Regional		ALA	D	D	D		D		Α		Α		Α	
24 Detection	North America South America	CGI		A					Α	Α	Α	Α	Α	Α
		WNA		D			Α	D	Α				Α	Α
Results:		CNA								Α				Α
		ENA							Α	A				A
1-Signal		САМ		D		D		D				A	Α	A
		SSA												
ANT ALL D: Detection A: Attribution	Europe	NEU	A	A					Α	Α		Α	Α	Α
		SEU			D				Α	Α	Α		Α	Α
	Africa	SAF												
		NAS	D	D	D	D	D	D	Α	D			Α	Α
	Asia	CAS				D			Α	Α			Α	Α
		TIB	D	D	D		D			D				D
		EAS	D		D		D		Α	Α				
Combined detection	Australia	NAU	Α	Α	Α		D	D						
		SAU	Α	D	Α		Α	D	Α	Α				
	Counts (total 16)		7	9	7	3	7	5	10	10	3	3	8	10

Dogional	Continents	Region	TNn		۲Х	Xn	TNn	+TXn	TNx		TXx		TNx+TXx	
Regional		ALA	D		Α		D							
Detection	North America South America	CGI	A	Α			Α	Α	A					
		WNA							Α				Α	
Results:		CNA							Α	Α				Α
		ENA				Α			Α	Α		Α	Α	A
2-Signal		САМ									A			
		SSA												
	Europe	NEU	A				A		D				D	
ANT		SEU							D	Α			Α	
NAT	Africa	SAF												
	Asia	NAS	D		D				D	Α			Α	
		CAS												
D: Detection		TIB							D	D			D	D
A: Attribution		EAS	Α						Α					
		NAU					Α							
Combined detection	Australia	SAU												
	Counts (total 16)		5	1	2	1	4	1	9	5	1	1	6	3