

Preliminary Results of Dynamical Downscaling for TCCIP project Phase 2

Chao-Tzuen Cheng, Yi-Yin Lin, Cheng-Ta Chen, Huang-Hsiung Hsu, and Akio Kitoh

National Sci. & Tech. Center for Disaster Reduction

Using WRF 3.5.1 as RCM

Thick yellow box indicates the domain of RCM. Resolution is 5 km. There are 380 \times 400 grid points, covering an area of $\sim 20^{\circ} \times 20^{\circ}$.

WRF 3.5.1 as RCM

- 5 km downscaling for climate projections of super high resolution AGCM: MRI-AGCM3.2S, HiRAM, and CAM5.
- 2 time slices, 1979-2003 and 2075-2099, will be simulated.

Physical Option

Noah land surface CAM3 radiation YSU Boundary Layer U WSM5 Monin-Obukhov microphysics surface layer No cumulus

- Spectral nudging is applied to U, V, Φ and T, but not to PBL.
- Use RCP8.5 GHG in radiatoin scheme.
- Taiwan land use replace MODIS/USGS data.

Advantage of using super high resolution AGCM data

Typhoons can be explicitly simulated by super high resolution AGCM.

Extreme precipitation events associated with Meiyu fronts are expected to be simulated.

Why turn off cumulus parameterization? Meiyu Rainfall simulation

			19
Option	Nudging	Cumulus	
Ctrl	on	on	
EXP 1	off	on	
EXP 2	off	off	1

- Exp 2 (no cumulus parameterization) gives the best result.
- Correct location is a big improvement.
- Intensity bias may be fixed via post process (bias correction).

Test RCM performance

RCM setting test

Exp. ID	Test type	Model Setting					
CTRL		Control run, warm start + wave #4 spectral nudging + CAM3 radiation + YSU PBL + no cumulus + WSM5 microphysics.					
NG_INIT		Strong nudging for the 1st hour at beginning, then no nudging.					
NOFDDA	No Nudging all the time	No nudging is applied.					
REINIT	dir the time	No nudging, reinitialize (cold start) at beginning of every month.					
FDDA01	Less	Apply wave # 2 spectral nudging.					
FDDA02	Nudging	Apply smaller nudging coefficient (x 0.1).					
RRTMG	Other	Use RRTMG radiation scheme.					
ACM2	Physics	Use ACM2 PBL scheme.					

Before large amount calculation for dynamical downscaling, 1999 NCEP-CFSR data is used to test RCM performance. OBS CTRL NGINIT NOFDA REINIT FDDA1 FDDA2 RF

Overall, control run doing best.

Temperature Profiles of JJA

- CTRL CTRL wrong NG_INIT NOFDDA REINIT FDDA01 FDDA02 RAD_RRTMG PBL_ACM2
- Winter time is better than summer time.
- Results also can be classified to 3 groups, with no, less, and normal nudging.
- Large biases in experiments with no nudging.

Time series of area-averaged precipitation over Taiwan

Make sure individual rain events are simulate with comparable amount.

No nudging group produce too much precipitation. Normal nudging group still does better in precipitation simulation. Not much different when different physic options were chosen.

Preliminary results of dynamical downscaling on NCEP-CFSR, HiRAM, and MRI-AGCM (1980-1988)

Precipitation of Spring (FMA,1980-1988, mm/day)

Precipitation patterns for all AGCMs are similar. Patter of biases also are similar.

All got improved after downscaling.

WRF-CFSR \rightarrow too much WRF-HiRAM \rightarrow too little WRF-MRI \rightarrow OK

Precipitation of Meiyu season (MJ,1980-1988, mm/day)

Precipitation patterns for all AGCMs are similar. Rains stay at east coast under southwesterly monsoon is not right.

All got improved after downscaling.

 $\begin{array}{ll} \mathsf{WRF}\text{-}\mathsf{CFSR} & \to \mathsf{too} \ \mathsf{much} \\ \mathsf{WRF}\text{-}\mathsf{HiRAM} & \to \mathsf{OK} \\ \mathsf{WRF}\text{-}\mathsf{MRI} & \to \mathsf{too} \ \mathsf{little} \end{array}$

Precipitation of Summer (JA, 1980-1988, mm/day)

Precipitation tend to stay at top of mountains in AGCMs and RCMs.

Peak value in southwest is not represented well.

WRF-CFSR \rightarrow too much WRF-HiRAM \rightarrow too much WRF-MRI \rightarrow OK

Precipitation of Autumn (SON, 1980-1988, mm/day)

Precipitation in east Taiwan are well simulated in AGCMs and RCMs.

Peak value in southwest is not represented well.

WRF-CFSR \rightarrow too much WRF-HiRAM \rightarrow too much WRF-MRI \rightarrow OK

Precipitation of Winter (DJ, 1980-1988, mm/day)

Precipitation concentrated in northeast Taiwan are well simulated by RCMs.

WRF-CFSR \rightarrow too much WRF-HiRAM \rightarrow too little WRF-MRI \rightarrow OK

Seasonal Mean of Precipitation

(1980-1988, mm/day)

Large biases still happen in warm seasons (May to Aug).

WRF-CFSR overestimates precipitation all year round.

WRF-HiRAM overestimates in JASON, underestimates in other months.

WRF-MRI underestimates in Meiyu season.

Patterns of warm seasons are not well represented.

WRF-CFSR overestimates precipitation all year round.

WRF-HiRAM overestimates in JASON, underestimates in other months.

WRF-MRI underestimates in Meiyu season.

Annual cycle of precipitation over Taiwan

Monthly Mean of Precipitation (1980-1988)

Seasonal precipitation biases of different areas

		Spring (FMA	-		Meiyu (MJ)		S	Summe (JA)	er	1	Autum (SON)			Winte (DJ)	r
	CFSR	MRI	HIRAM	CFSR	MRI	HIRAM	CFSR	MRI	HIRAM	CFSR	MRI	HIRAM	CFSR	MRI	HIRAM
North	19.3%	-11.3%	-48.1%	49.5%	-41.6%	-6.0%	49.3%	32.7%	52.1%	20.6%	-25.4%	7.1%	21.8%	8.8%	-48.0%
Center	26.3%	0.4%	-34.0%	53.4%	-38.3%	-9.3%	33.1%	16.1%	39.1%	76.6%	-8.6%	31.9%	-11.9%	-14.2%	-50.3%
South	45.7%	20.5%	-20.6%	40.9%	-30.4%	-17.3%	19.0%	-9.2%	0.5%	39.2%	-19.0%	-8.0%	17.9%	11.3%	8.7%
East	76.6%	17.4%	-0.1%	115.9%	32.7%	44.4%	62.2%	19.0%	84.6%	34.6%	13.2%	35.1%	32.5%	45.3%	14.5%
Taiwan	38.6%	3.1%	-28.5%	64.7%	-19.3%	2.7%	38.7%	11.6%	41.0%	36.4%	-5.3%	19.4%	18.5%	18.1%	-20.0%

WRF-MRI outperformes others except in Meiyu season. WRF-HiRAM is better in Meiyu season.

PDF of Daily Rainfall over Taiwan area

Seasonal Mean of Rain Days (24hr Preci. > 1 mm)

Seasonal Mean of Extreme Rain Days (24hr Preci. > 130 mm)

Summary

- WRF model is used as RCM to downscale data of NCEP-CFSR reanalysis, MRI AGCM and HiRAM climate simulation over Taiwan area.
- Preliminary results show significant improvement in spatial distribution of climate variables. 3 AGCMs show similar spatial biases of precipitation, all of them can be corrected.
- WRF-HiRAM and WRF-MRI downscaling both improve precipitation amount.
- Although precipitation of reanalysis data sets <u>before</u> and <u>after</u> downscaling show good annual cycle, both are overestimated too much.
 - In term of precipitation amount, WRF-MRI data outperformed others except in Meiyu season. Precipitation of WRF-HiRAM data is better in Meiyu season.
- Difference between GCM is larger than that between RCM and GCM. RCM performance pretty much depends on GCM.

Thanks for your Attention

Result – Rain in model domain

Cumulus parameterization causes too much rain in south & east
Option Nu

Option	Nudging	Cumulus
Ctrl	on	on
EXP 1	off	on
EXP 2	off	off

Meiyu Precipitation (1979-2003), South of Taiwan

Inter-annual variation is similar but with larger amplitude (closer to observation). Still dominated by large scale circulation

PDF weighted by intensity. Rainfall % from each intensity bin.

Ctrl & EXP1 : similar, more moderate rain, 20<R<60 mm/day. Cumulus? EXP2:

- More rain in 40<R<100 mm/day, closer to observation
- In south Taiwan : OBS R>200mm/day contributes most (~14%) ;

too much for R<100 mm/day ; too few R>100 mm/day

OBS(1980-1989)

1440

1460

Circulation at 850hPa

(C) WRF-CFSR

1980-1988 WINTER, ZUV 850hPa

1500

1480

(B) WRF-HIRAM

1520

1540

(A) WRF-MRI

Circulation at 1000hPa

Circulation at 500hPa

1980-1988 AUTUMN, ZUV 500hPa OBS(1980-1989) (A) WRF-MRI (B) WRF-HIRAM (C) WRF-CFSR (C) WRF-CFSR 5800 5820 5840 5860 5880 5900

Circulation at 200hPa

1980-1988 MEIYU, ZUV 200hPa OBS(1980-1989) (A) WRF-MRI (B) WRF-HIRAM (C) WRF-CFSR (C

1980-1988 AUTUMN, ZUV 200hPa (A) WRF-MRI (B) WRF-HIRAM (C) WRF-CFSR (D) WRF-MRI (D) WRF-MRI (D) WRF-HIRAM (C) WRF-CFSR (D) WRF-CFSR (D) WRF-MRI (D) WRF-MRI (D) WRF-HIRAM (D) WRF-CFSR (D) WRF-WRI (D) WRF-MRI (D) WRF-HIRAM (D) WRF-CFSR (D) WRF-WRI (D) WRF-MRI (D) WRF-WRI (D) WRF-CFSR (D) WRF-WRI (D) WRF-WRI (D) WRI (D) WRF-WRI (D) WRF-WRI (D) WRI (D) WRF-WRI (D) WRI (D) WRF-WRI (D) WRI (D) WRF-WRI (D) WRI (D) WR

Seasonal mean, area-averaged Precipitation (1980-1988, mm/day)

