

Part I: TCCIP計畫介紹

國家災害防救科技中心

氣候變遷三大核心概念

簡報大綱

⇒IPCC AR5的訊息

⇒TCCIP的角色

⇒台灣的氣候變遷趨勢

IPCC 報告緣由

⇒ IPCC (Intergovernmental Panel on Climate Change,政府間氣候變遷專門委員會)由世界氣象組織(WMO)與聯合國環境規劃署(UNEP)於1988年所成立

- ⇒提供決策者客觀的資訊來源,包含
 - 氣候變遷的成因
 - 對環境與社會經濟的潛在衝擊
 - 可能的因應方法

IPCC 報告的貢獻

第一次報告(FAR, 1990)

對UNFCCC(聯合國氣候變遷公約)內容產生重要影響

第二次報告(SAR, 1996)

對京都議定書協議內容產生重大影響

第三次報告(TAR, 2001)

聚焦於衝擊的問題,並強調調適的重要性

第四次報告(AR4, 2007)

針對後京都議定書時代,提出增溫控制在2°C的終極目標

第五次報告(AR5, 2013-2014)

檢視2°C的目標,並為2015巴黎協議(Paris 2015 agreement)做準備

全球氣溫變遷趨勢

(a) 觀測到的 1850 年至 2012 年全球平均地表與海表溫度距平的變化

觀察到的現象

(a) 北半球春雪覆蓋面積

(d)全球平均海平面變化

碳循環觀測指標

海表面二氧化碳和酸鹼值 (b) 400 容於海水中的二氧化碳分壓(μatm) 380 360 340 320 8.12 글

CO2濃度目前已達 400ppm 與300萬年 前相同

美國NOAA位於夏威夷的監控中心, 於2014年5月監測到, 400.03ppm的二氧化碳濃度,這 是1958年開始監測以來,首次突 破400ppm門檻。

> 海洋酸化情況越來 越嚴重

1950

1960

1970

1980

1990

2000

2010

AR5新情境「代表濃度途徑」

Representative Concentration Pathways (RCPs)

- (1) RCP2.6:相對較低的溫室氣體增加的情境,大氣輻射力先在二十一世紀中 葉達到最大值 3Wm⁻²,大約和二氧化碳濃度 490ppm 相似,然後再緩慢下 降到二十一世紀末。
- (2) RCP4.5:大氣輻射力會在二十一世紀末到達一個穩定狀態的情境,大約為 4.5Wm⁻²,和二氧化碳濃度 650ppm 相似,代表世界各國會想盡辦法做到溫 室氣體減量的目標。
- (3) RCP6.0:和 RCP4.5 相似,但大氣輻射力為 6Wm⁻²,約為二氧化碳濃度 850ppm,代表世界各國並沒有盡全力積極做到溫室氣體減量的目標。
- (4) RCP8.5: 大氣輻射力持續的增加到大於 8.5Wm⁻², 即二氧化碳濃度會大於 1370ppm, 代表世界各國並無任何減量的動作。

「IPCC AR4與AR5 未來氣候變遷推估

未來溫度推估變化趨勢

未來溫度與雨量變化

海平面未來推估

東亞季風區的降雨變遷

- 降雨增多
- 降雨強度增強
- 季風較早發生
- 季風較晚結束
- 季風的發生時期較長

颱風變化推估結果

⇒東亞季風區的降雨(平均降雨與極端降雨)都有增加趨勢。

□ 西北太平洋地區颱風的氣候變遷推估的不確定性較高平均而言,颱風發生頻率減少,強烈颱風發生機率可能增加,降雨部分也是增加的機率較高。但此部份的不確定性也較大。

海平面上升趨勢推估

未來推估之溫度與海平面高度

		2046-	-2065	2081	-2100
	情境	平均值	可能範圍。	平均值	可能範圍。
	(Scenario)	(Mean)	(Likely rangy)	(Mean)	(Likely rangy)
	RCP 2.6	1.0	0.4-1.6	1.0	0.3-1.7
全球平均地表	RCP 4.5	1.4	0.9-2.0	1.8	1.1-2.6
溫度變化 (°C)ª	RCP 6.0	1.3	0.8-1.8	2.2	1.4-3.1
	RCP 8.5	2.0	1.4-2.6	3.7	2.6-4.8
	情境	平均值	可能範圍d	平均值	可能範圍 d
	(Scenario)	(Mean)	(Likely rangy)	(Mean)	(Likely rangy)
	RCP 2.6	0.24	0.17-0.32	0.40	0.26-0.55
全球平均	RCP 4.5	0.26	0.19-0.33	0.47	0.32-0.63
海平面上升 (m)b	RCP 6.0	0.25	0.18-0.32	0.48	0.33-0.63
	RCP 8.5	0.30	0.22-0.38	0.63	0.45-0.82

温度:最嚴重上升2.6~4.8度

海平面上升:最嚴重上升0.45~0.82公尺

未來變遷趨勢

	進一步變遷的可能性						
現象與趨勢走向	21世紀早期	21世紀後期					
豪大雨事件: 發生的頻率、強度及/或降雨量增加	15	非常可能 大部分中緯度 陸地地區及潮濕熱帶地區					
乾旱的強度及/或持續時間增加	低可信度	可能(中等可信度) 區域尺 度到全球尺度					
強烈熱帶氣旋活動增加	低可信度	比較可能 西北太平洋及 北大西洋海域					
極端高海平面發生率及/或程度增加	可能	非常可能					

IPCC Assessment Report 5 (AR5) WGII: Impact, Adaptation and Vulnerability

○ 亞洲主要風險:水災導致之社會衝擊(基礎建設、生計)、溫度相關之健康風險(死亡率)、乾旱導致之水資源及糧食短缺

科技部氣候變遷三大主軸計畫

氣候變遷研究聯盟-氣候變遷實驗室 (CCliCS)

模式能力建構、基礎研究

計畫期限: 100~104

臺灣氣候變遷推估與資訊平台建置計畫 (TCCIP)

臺灣氣候變遷資料/資訊提供

計畫期限: 99~101, 102~104

氣候變遷調適科技計畫 (TaiCCAT)

脆弱度評估、調適治理

計畫期限: 100, 101, 102~104

TCCIP在國家所扮演的角色

國發會

氣候變遷調適政策 綱領與行動方案 (102~106) 調適科技、評估技術

科技部 氣候變遷調適科技 (TaiCCAT)

調適行動方案推動

科技部

臺灣氣候變遷推估與資訊平台 建置計畫(TCCIP) (99~101,102~104)

科技部 氣候變遷實驗室 (CCliCs)

資料應用 資料服務

科學研究社群

其他調適部門研究計畫/團隊

(如農委會、疾管局、能源局、林 務局、教育部) 水利署 氣候變遷對水環境之 衝擊與調適

NCDR 防災領域應用研究

TCCIP-II 計畫推動架構

學術研發

臺灣氣候變遷推估與資訊平台

中央氣象局

水利署、農試所...

科技部

國家災害防救科技中心

- 規劃運作
- 整合學術界研究能量
- 培育優秀人才

中研院環境變遷中心

師大、台大、交大、 中大、北市大、彰師 大、長榮大...

國際接軌

IPCC CMIP5資料

日本氣候變遷創生計畫

高解析氣候模式(20KM)資料

高解析度AGCM (GFDL HiRAM, NCAR CAM5)

CORDEX-EA 資料

應用研究

政策綱領調適 行動領域

強

新 增

健 康

能源產業

施生

水資源

生態

農業

TCCIP-II 團隊分工架構

氣候變遷資料、技術、知識與服務整合架構圖

氣象資料收集與建置

CMIP5資料、高解析度GCM

模式特性與結果分析

Team1 觀測與模式資料分析

Team2 降尺度推估資料產製

現象分析需求

降尺度資料

觀測資料 /變遷趨勢 /科學知識

Team3 使用者資料應用研究、不確定性分析

推估資料 /變遷趨勢

應用經驗/知識

關鍵技術/工具

Team4 資料服務、使用者溝通、成果推廣

紙本資料數位化

■ 紙本資料(超過1300萬筆資料):

- 所有測站**逐時雨量資料**
- 所有測站**日資料**補齊 日資料計23項,各站登錄項目不一

(平均測站氣壓、最高測站氣壓、最低測站氣壓、平均氣溫、氣溫日較差、最高氣溫、平均露點溫度、平均水氣壓、最大水氣壓、最小水氣壓、平均相對濕度、最小相對濕度、平均風風速、平均風風速、平均風風速、最大平均風風向、降水量、降水時數、最大十分鐘降水量、最大一小時降水量、日照時數、日照率)

資料均一化

臺灣平地年均雨量變遷

(臺北、臺中、臺南、恆春、臺東、花蓮六個具百年以上測站記錄)

(a) 年總雨量之時間序列與變化趨勢。 (b) 100年、50年、30年變化幅度。 實心長條圖表示變化趨勢通過95%的信心度檢定,空心長條則表示未通過。

臺灣平地年總降雨日數有減少趨勢

- 全島平均的年總降雨日數不論是在100年、50年與30年都有明顯下降的趨勢。
- 100年趨勢為每10年減少4天,30年則增至每10年減少6天

示變化趨勢通過95%的信心度檢定,空心長條則表示未通過。

臺灣大豪雨日數統計

臺灣地區大豪兩日數在近30年有明顯增多的趨勢,大約有50~60年週期的年代際變化現象。小兩日數則大幅度減少,百年趨勢為每10年減少2天,而近30年增加為每10年減少4天。

「台灣氣候變遷科學報告2011」

下載網址: <u>www.ncdr.nat.gov.tw/</u>

或 www.nsc.gov.tw

第一章 全球氣候變遷觀測

第二章 東亞 / 西北太平洋氣候變遷

第三章 氣候自然變異與年代際變化

第四章 臺灣地區氣候變遷

第五章 未來氣候變遷推估

第六章 氣候變遷與災害衝擊

相關成果已納入經建會氣候變遷政策綱領

未來的氣候變遷推估資料

統計降尺度

動力降尺度

降尺度示意圖

動力降尺度

Climate Models Regional models

統計降尺度

Climate Model

Downscaled

統計降尺度

未來情境推估-溫度

tmp change 2080-2099

A1B情境下臺灣地區未來溫度變化推估

(2080~2099年減去1980~1999年平均)

	近地表氣溫平均變化 (°C)									
區域	季節	最小	10	25	50	75	90	最大		
	冬(DJF)	1.1	1.4	1.9	2.4	2.9	3	3.7		
北 臺	春(MAM)	1.6	1.7	1.9	2.3	2.6	2.7	3.5		
~ 灣	夏(JJA)	1.2	1.4	1.9	2.3	2.6	3	3.6		
	秋(SON)	1.3	1.4	2	2.2	2.7	3	3.5		
	冬(DJF)	1.1	1.3	1.8	2.3	2.7	3.1	3.4		
中臺	春(MAM)	1.6	1.6	1.9	2.3	2.6	2.8	3.5		
灣	夏(JJA)	1.2	1.4	1.9	2.2	2.6	3	3.6		
	秋(SON)	1.3	1.4	2	2.2	2.7	2.9	3.4		
	冬(DJF)	1	1.4	1.8	2.2	2.5	2.9	3.2		
南臺	春(MAM)	1.5	1.6	1.8	2.2	2.4	2.7	3.3		
室 灣	夏(JJA)	1.2	1.3	1.9	2.1	2.5	2.9	3.7		
	秋(SON)	1.2	1.4	1.9	2.1	2.6	2.8	3.4		
	冬(DJF)	1	1.3	1.9	2.3	2.7	2.9	3.5		
東	春(MAM)	1.6	1.6	1.8	2.2	2.6	2.7	3.5		
東臺灣	夏(JJA)	1.2	1.3	1.9	2.2	2.6	2.9	3.7		
	秋(SON)	1.2	1.4	2	2.2	2.7	2.9	3.5		

區域季節平均變化中位數介於 2.1℃~2.4℃間,**北臺灣較南臺灣的增** 溫幅度略高,而秋季較其他季節略低

未來情境推估

prec change 2020-2039

A1B情境下臺灣地區未來雨量變化推估

(2080~2099年減去1980~1999年平均)

	降水量平均百分比變化 (%)									
區域	季節	最小	10	25	50	75	90	最大		
	冬(DJF)	-39	-34	-21	-13	0	6	30		
北 臺	春(MAM)	-24	-23	-15	-3	8	13	20		
室灣	夏(JJA)	-12	-10	-3	13	26	36	43		
	秋(SON)	-25	-23	-12	-3	11	14	38		
	冬(DJF)	-41	-38	-22	-15	0	6	34		
中臺灣	春(MAM)	-27	-26	-18	-3	8	11	29		
	夏(JJA)	-9	-8	-4	15	28	34	47		
	秋(SON)	-26	-20	-11	-2	14	18	47		
	冬(DJF)	-37	-35	-23	-16	-2	6	35		
南臺	春(MAM)	-31	-29	-22	-7	4	10	35		
室灣	夏(JJA)	-16	-14	-3	19	28	34	52		
	秋(SON)	-25	-20	-9	-1	15	22	55		
東	冬(DJF)	-37	-34	-20	-15	-1	6	26		
	春(MAM)	-27	-26	-19	-4	6	10	28		
臺灣	夏(JJA)	-14	-12	-3	16	28	33	43		
	秋(SON)	-24	-21	-11	-3	13	18	48		

模式推估未來冬季平均雨量多半是減少的,夏季平均雨量多是增加的。對於臺灣未來的水資源調配是一大挑戰

降水量變化部分有標記顏色的表示其至少有**3/4**以上的模式都有相同的符號,橘色為減少。

最新氣候變遷推估資料產製

統計降尺度 - IPCC AR5 (CMIP5) 資料產製及加值分析

最新CMIP5月均溫、 月降雨5Km降尺度資料產製,目前結果顯 小與上一期資料 (CMIP3)比較, 勢類似,台灣依 舊呈現豐越豐, 枯越枯的趨勢!

暖化越嚴重, 降雨分布不均 的趨勢越明顯!

高解析全球模式(HiRAM)

(中研院環變中心提供)

動力降尺度

承接MRI高解析度模式 資料之研究區域

模式中台灣地形解析比較

(a.)-GCM

EH5 terrain-

區域氣候模式 較能凸顯台灣 特殊地形效應 對降雨之影響

WRF

WRF domain1 Terrain Height(m) WRF domain2 Terrain Height(m)

動力降尺度(強降雨日數)

侵臺颱風模擬

				Will .										
	JAN	FEB	MAR	APL	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	Total	Per Year
1979-2003	0	0	0	2	5	12	23	21	15	6	3	1	88	3.52
2015-2039	0	0	1	2	3	8	23	20	16	6	1	1	81	3.24
2075-2099	0	0	1	1	8	8	19	22	9	10	3	1	82	3.28
1992-2010	0	0	0	1	3	10	20	37	23	11	2	0	107	5.63

Precipitation of top 6 typhoons in 2075-2099

五大流域前10名強降雨颱風的平均降雨

動力模式資料應用:地面日最高溫度的變遷

K	esc	οlι	Jti	or

3	hoı	url	У
3D	(x,	у,	p)

風場、重力位、氣溫、相對濕度、水汽、雲水、雲冰、雨水、雪

3 hourly 2D (x, y)

地面降水、地形高度、地面氣壓、海平面氣壓、地表10米水平風場、 地表2米氣溫、地表2米水汽、海表面洋溫、整層水汽、整層雲水、整 層雲冰、整層雨水、整層雪

Hourly 2D (x, y)

地表 :可感熱通量、潛熱通量、溫度

2米高 : 氣溫、水汽 10米高 :水平風場

輻射通量:地表向下短波、地表向下長波、晴空地表向下短波、晴空

地表向下長波、頂層向上短波、頂層向上長波、晴空頂層

向上短波、晴空頂層向上長波

地面降水、地形高度、地面氣壓、海表面洋溫、地表逕流、地底逕流 邊界層高度

Daily 2D (x,y)

地表 :最低氣溫、最高氣溫、反照率、發射率

:最低氣溫、最高氣溫、最低水汽量、最高水汽量 2米高

10米高 :最小水平風場、最大水平風場

輻射通量: 地表向下(向上)短波、地表向下(向上)長波、晴空地表向

下短波、晴空地表向下長波、頂層向上(向下)短波、頂層

向上(向下)長波、晴空頂層向上短波、晴空頂層向上長波

日照長度