Hydrological Impact of Climate Change in Japan and Taiwan using high resolution MRI-AGCM

Faculty of Agriculture Ehime University

2016 TCCIP Workshop on Applications of Climate Change Projection 8-10 March 2016, New Taipei City, Taiwan

Contents Outline

- 1. Sousei-D (Introduction)
- 2. Worst case scenarios
- 3. Snow and Water Resources in Japan
- 4. Projected Climate Change in Taiwan
- 5. Conclusion

1. Introduction

Program for Risk Information on Climate Change

(Sousei Program)

Climate Change Research Project in Japan

Sousei Program

Sousei Theme-D: Precise impact assessments on climate change

Key issues in SOUSEI-D

Precise impact assessments on climate change

- Generating PDF of extreme values with higher accuracy
 - PPE(Physics Parameter Ensemble) / SST ensemble to estimate uncertainty
 - Use of regional scale model (RCM) to reduce local biases
- Proposing adaptation and mitigation philosophy
 - Projection of probabilistic risk
 - Estimation of worst class cases

2. Worst case scenarios

Program for Risk Information on Climate Change

(Sousei Program)

Background

- Extreme events, such as Heavy rainfall and high winds under typhoon conditions, strongly depends on its track and intensity.
- However, the number of the actual severe typhoons are limited.
- Therefore, to increase the number of extreme event, we generated a lot of severe typhoons artificially.

What will happen if the track changes ?

Typhoon Vera (1959)

Typhoon Vera (Isewan Typhoon)

T5915	Category 5 Typhoor
Formed	September 20, 1959
Dissipated	September 29, 1959
Highest winds	305 km/h (190 mph)
Lowest pressure	895 hPa

Multi-Track Typhoon Simulation

Model	WRF/ARW3.1.1
Mesh Size	379x379x50 (Regional 3km)
Start Time	September 24, 1959 12 UTC
End Time	September 28, 1959 00 UTC
Initial/Boundary	JMA-NHM (6h)
Method	Potential Vorticity Inversion method*
*Davis and Emanuel (199 *Yoshino et al. (2003), An	1) Mon.Wea.Rev.,119:1929-1953. nuals of D.P.R.I. Kyoto Univ., 46: 423-442.
Track Number	17 (Course 1 – Course 17)
Cumulus Scheme	None
Cloud Microphysica	al Scheme WSM 6
Boundary Layer	Scheme MYJ Level2.5

Pseudo Global Warming method

GCM	MRI-AGCM3.2S (Global 20km) SRES-A1B
Data Average	Air temperature (Sep.)
Delta	= Future (1979-2003) - Present (2075-2099)

Distributed Hydrological Model (Hydro-BEAM)

Surface runoff

ubsurface runof

Hydro-BEAM

Calibrated**

None***

**Sato et al. (2013) Hydrol. Proc. 27:3264-3279. **Sato et al. (2012) TAO 23: 527-540.

***Lake Biwa's Outlet Weir is considered (Close)

1km (Interpolated by IDW method)

30min Precipitation (from WRF)

60min Average River Discharge

Resolution

1km

input rain (rainfall+snowmelt)

d

Runoff Simulation

Model

Mesh Size Parameter

Input Data

Output Data

Reservoirs

SOUSEI

Difference between Present and Future

Worst case for river discharge

Summary 1: Worst-case scenarios

- Worst-case scenarios for natural disaster assessments:
 - water-related disasters, coastal disasters, wind disasters, eco-system disasters
- Not the sole worst case, but multiple worst scenarios
 - Generally typhoons cause multiple hazards simultaneously
 - flooding + high winds + high waves

The complex disaster research sub-group is now discussing about this multiple worst scenarios

3. Snow and water resources in Japan

Program for Risk Information on Climate Change

(Sousei Program)

Precipitation and Snow in Japan

Annual Total Precipitation **1744.7** *mm* (1981-2010)

7,5000km²(20% of total land area) 3.4 Million people (2.6% of total population Special heavy 4400 snowfall area 4000 3600 3200 2800 2400 2000 1600 Rain Heavy snowfall area 190,000km²(50% of total land area) 20 Million people (16% of total population)

Designated Areas of Heavy Snowfall

Snow

Observed River Discharge (Tedori River)

Impact Assessment of Climate Change MRI-AGCM3.1S/3.2S

*25-yr time slice simulations

Muilti-model ensemble simulation

Flood and Drought in the Future

Change of Monthly River Discharge

Study Area (9 \rightarrow 109 River system)

Projected Climate Change (RCP 8.5)

Monthly rainfall and snowfall

River discharge

Impact of climate change on river discharge

Summary 2: Snow and Water Resources

As the rise of air temperature, T

- Flow regime
 Snow period
- 3. Amount of snow

will change significantly.

Therefore, we have to reconsider

- 1. Water allocation (Water right)
- 2. Reservoir operation rule
- 3. Snow removal plan for airport, railway and highways etc.
- 4. Ski resort business

to mitigate the impact of the climate change.

4. Projected Climate Change in Taiwan

for TCCIP Workshop 2016

River Basin Modeling

Elevation Data

http://www2.jpl.nasa.gov/srtm/

Basin boundary data

Global Drainage Basin Data Base (GDBD)

Center for Global Environmental Research (CGER) National Institute for Environmental Studies

http://www.cger.nies.go.jp/db/gdbd/gdbd_index_e.h tml

O Access O Site Map

日本語トップページ

CCER Center for Global Environmental Research National Institute for Environmetal Studies

Home About Us Climate Change Research Program Activities

Global Drainage Basin Database (GDBD)

Selected River Basin in Taiwan

Air temperature (RCP 8.5)

Present Future (2075-2099) – Present (1979-2003)25.5 25.5 +3.41℃ 18.1°C 25-24 23 22 21 24.5-20 24.5 6.7 19 18 17 16 24-15 14 13 12 23.5-23.5 23-23 **∳3.43**℃ 8.5% 22.5-22.5-120.5 121 121.5 122 120.5 121 121.5 122

Precipitation

Present (1979-2003)

Future (2075-2099) / Present

River Discharge

Impact of climate change on river discharge

River Water Temperature

Ecosystem and River Water Temperature

River water temperature

F - P ---- P: 1979-2003 ---- F: 2075-2099

20

Summary 3: Hydrological Impact of CC

- 3 River basins in Taiwan was modeled for assessing hydrological impact of climate change.
- Land-use data and reservoir operations models are not included.
- Parameter calibration is not conducted

We are very happy to collaborate with hydrology research groups in Taiwan

Concluding Remarks

- The MRI-AGCM gives a realistic extreme hazard projection (e.g. Max. and Min. discharge) at the river basin scale in Japan and Taiwan. (such as steep mountainous small Island).
- For the precise impact assessment and to reduce the uncertainties, improvement of the future climate projections and hydrological model simulations are still needed.
- (i.e. ensemble simulation and DDS, SDS are needed)
- It is very important to discuss about a worst-case scenarios for hazard and disaster risk management under climate change.

Outlook SOUSEI Program for 2017

natural disasters, water resources and ecosystem

Thank you for your kind attention!

SOUSE Program for Risk Information on Climate Change

Acknowledgement

This study was supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) under the framework of the "KAKUSHIN" and the "SOUSEI" program.

Risk assessment of meteorological disasters

Socio-economic impact assessment

Risk assessment of river disasters

Precipitation Input based on Various Scenarios

Advantages of High Resolution Model

Higher resolution model can make possible precise impact assessment of climate change. (river basin scale)

IPCC AR5 RCP (Representative Concentration Pathways)

Model Ensemble

Sub-groups in Group D

i Climate change impacts on **natural hazards** (Eiichi Nakakita. Kyoto U)

i-a Metrological risk (Takemi, Kyoto U)	12		
i-b River risk (Tachikawa, Kyoto U)	25		
i-c Coastal risk (Mori, Kyoto U)	18		
i-d Risk management (Tatano, Kyoto U)	06		
i-e River risk in global scale (Suzuki, PWRI)	15		
ii Climate change impacts on water resources (Tanaka, Kyoto U)			
ii-a Social-economic risk (Tanaka, Kyoto U)	18		
ii-b Anthropogenic effects (Oki, U Tokyo)	08		
iii Change impacts on ecosystem and biodiversity (Nakashizuka, Tohoku U)			
iii-a Forest and lakes (Nakashizuka, Tohoku U)	04		
iii-b Social-economic impact (Managi, Tohoku U)	04		
iii-c Impact in East and East-South Asia (Kumagai, Nagoya U)	10		
iii-d Coastal ecosystem (Yamanaka, Hokkaido)	10		

River basin modeling for Taiwan

for TCCIP Workshop 2016

Flow direction and routing

Water Balance

Sousei Program

Program for Risk Information on Climate Change

Theme E: JAMSTEC

Promotion for climate change research and linkage coordination

Promotion for effective researches on climate change = Support for forming common recognition on climate change risk information = Stabilishment of a system required for providing information and advice on climate cha

sentative: Michio Kawamiya

ect Manager, JAMSTEC

(Tohoku University)

ecosystem (Hokkaldo University)

Economic evaluation of ecosystem science (Tohoku University)

Eco-climate system in northeastern Eurasia and southeastern Asian tropics: impacts of global climate change (Nagoya University)

Assessment of multiple effects of climate change on coastal marine

Sousei Program, Group D Precise impact assessments on climate change

Impact Assessment >> Risk Assessment

Risk = hazard * vulnerability *exposure

Intergovernmental Panel on Climate Change (IPCC), Fifth Assessment Report (AR5), WG2 Summary for Policymakers (SPM)

