

Evaluation of health impacts under climate change projection in Taiwan –

Dengue fever and heat related mortality

Pei-Chih Wu*, Chi-Yu Chuang

長榮大學職業安全與衛生學系 Dept. of Occupational Safety and Health, Chang Jung Christian University, Taiwan

Associations between potential health effects and climate variability and changes

Projection- Risk of dengue fever epidemics and heat-related mortality

Historical models

- Dengue fever 1998~2006 (Wu et al. 2009)
- Heat-related mortality 1994~2008 (Sung et al. 2013)

Validation

Data updated

- Meteorological database (NCDR)— 1998-2013 (5km*5km)
- Dengue fever notification data (CDC) 1998-2014 (Township)
- Mortality (Ministry of Health and Welfare) 2010 (Township)
- Demographic and housing census (Ministry of Interior affairs) 2010 (Township)

Projection IPCC AR5 RCP8.5 (2016-2035, 2046-2065, 2081-2100)

TCCIP (IPCC AR5)

The global distribution and burden of dengue

[Bhatt et al. 2013] nature

Aedes aegypti

Aedes albopictus

We predict dengue to be ubiquitous throughout the tropics, with local spatial variations in risk influenced strongly by <u>rainfall</u>, <u>temperature</u> and the <u>degree of</u> <u>urbanization</u>.

Around 390 million dengue infections per year

Probability of dengue occurrence at $5 \text{ km} \times 5 \text{ km}$ spatial resolution of the mean predicted map from 336 boosted regression tree models (2010)

2016/3/14

The association between different climatic drivers and the global prevalence and geographic distribution of selected vector-borne diseases observed over the period 2008-2012

Disease	Area	Cases-yr	Climate Sensitivity and Confidence in Climate Effect	Key references
Mosquito-borne dis	eases			
Malaria	Mainly Africa, SE Asia	about 220 million		WHO 2008, Kelly-Hope et al 2009, Omumbo et al 2011, Alonso et al 201
Dengue	100 countries esp Asia Pacific	about 50 million		Beebe 2009, Descloux 2012, Earnest et al 2012, Pham et al 2011, Astrom e al 2012
lick-borne diseases				
Tick-borne encephalitis	Europe, Russian Fed Mongolia, China	about 10,000		Tokarevich et al 2011
lyme	Temperate areas of Europe, Asia, North America	about 20,000 in USA		Bennet 2006, Ogden et al 2008
Other vector-borne	diseases			0
Hemorrhagic fever with renal syndrome (HFRS)	Global	0.15 – 0.2 million		Fang et al 2010
Plague	Endemic in many locations worldwide	about 40,000		Stenseth et al 2006, Xu et al 2011, Ari et al 2010
Climate	drivers		Climate driver variables	Confidence levels
1 4			Increase or decrease >Increased < Decreased	High confidence in global effect
• "			# of cases - More - Envior	High confidence in local effect
Temperature Precip	pitation Humidity		Footnote 1 Effects are specific to Anopheles spp	Low confidence in effect

彎氣候變遷推估與資訊

Research scheme for infectious diseases

	Long-term pattern	Effects of extreme weather
Size of epidemic in endemic areas	✓ Time-series analysis (ARIMA) or Poisson regression	Relative risk during event period (Relative Risk; RR)
The geographic distribution of infectious diseases	✓ spatial regression model	spatial regression model
Outbreak and the region have potential for disease outbreak		temporal-spatial cluster analysis
Socioeconomic factors and regional vulnerability	✓ PCA spatial regression model	✓ PCA spatial regression model

Estimated baseline population at risk in 1990 (A) and estimated population at risk in 2085 (B)

彎氣候變遷推估與資訊平台

Results of a logistic regression model with vapour pressure (humidity) as the predictor of dengue fever risk, using climate data from 1961 to 1990 (A).

Forecast geographical distribution of dengue transmission based on climate projections for 2080–2100 from a global circulation model (CCGCMA2) (B).

[Hales, 2002]

Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan

Factors loading and percentage of variance explained

Components	Variance explained	Loading
PCA 1: Urbanization	35.782%	
Average population density (person/km2)		0.840
Service industry (1/10000)		0.841
Agriculture industry (1/10000)		-0.625
House ownership (1/10000)		-0.741
Numbers of clinics		0.846
Median of income		0.722
PCA2: Elder population	24.189%	
Elders living alone (1/10000)		0.906
Elders (1/10000)		0.845
Disability (1/10000)		0.584
Over crowed in residence		0744
PCA3: Aborigine	14.119%	
Aborigine		0.920
Sum of variance explained	74.090%	

Examining the spatial relationships among dengue occurrence during 1998 to 2002, climatic, environmental, socioeconomic and demographic factors by using spatial regression

	Cumulative incidence from 1998 to 2002 ^a		
Coefficients	Ordinary Least Squares (OLS) R ² =0.151	Spatial lag model R ² =0.446	
Imported incidence from 1998 to 2002	0.091	-0.248	
The household vectors recovery rate	0.111	0.073	
Annual rainfall	-0.073	-0.055	
Annual numbers of months with average temperature higher than 18 °C	9.373**	2.807**	
Factor 1: Urbanization	15.798** 8.590**		
Factor 2: Elder population	-0.373	0.287	
Factor 3: Aborigine population	5.772	4.503	
Constants	-69.709**	-17.176	
Rho		0.870**	
Moran's I value of residues	0.3088	-0.0487	

**p<0.05

[Science of total Environment, 2009]

Risk map of dengue fever transmission

Examining the spatial relationships among cumulative incidence from 1998 to 2002 and 2003 to 2013, climatic, environmental, socioeconomic and demographic factors by using spatial regression

	Cumulative incidence from 1998 to 2002	Cumulative incidence from 2003 to 2013	Average incidence from 2003 to 2013
Coefficients	Spatial lag model R ² =0.446	Spatial lag model R ² =0.438	Spatial lag model R ² =0.438
Imported incidence	-0.248	0.2319	0.2319
The household vectors recovery rate (% of BI>1)	0.073	0.3263	0.0297
Annual rainfall	-0.055	-0.1609	-0.0146
Annual numbers of months with average temperature higher than 18 °c	2.807**	6.8211***	0.6200***
Factor 1: Urbanization	8.590**	14.5283***	1.3208***
Factor 2: Elder population	0.287	1.4071	0.1279
Factor 3: Aborigine population	4.503	9.1730**	0.8339**
Constants	-17.176	-46.0041	-4.1822
Rho	0.870	0.5666	0.5666
			** p<0.05 ***p<0.01
TTELEE ME 臺灣氣候變遷推估與資訊平台 Taiwan Clinate Change Projection and Information Platform			2016/3/14

Annual temperature

[TCCIP, 2015]

Risk map of dengue fever transmission [TCCIP, 2015]

Epidemic of dengue fever in Taiwan

Climate change and Dengue fever epidemics in Taiwan

- Numbers of warmer months, higher urbanization, and higher indigenous population were found to be the determinant risk factors for dengue fever epidemics at township level.
- The risk of temperature threshold could adapt to predicting future impacts of global warming on vulnerable population distribution for dengue fever transmission in Taiwan.
- Preliminary estimation showed that trend of island-wide warming in the future would likely cause large-scale geographical expansion for areas at risk for dengue fever outbreak in Taiwan.
- This model and risk map could facilitate prioritize the regions of disease control program now and in the future under climate change threaten.

How about other vector-borne diseases in Taiwan?

More Intense Hot Days and Heat Waves

2016/3/14

Cardiovascular mortality 2 weeks after cold and heat events

Vulnerable indicators:

- Higher baseline of mortality
- Lower medical resources and urbanization
- Higher Susceptible population (elders, elders living alone, disability)
- Higher indigenous population

Identify the "heat threshold" in different region

Benefits Mapping and Analysis Program (**BenMAP**)

Environmental Protection Adr Executive Yuan.R.O.C(Taiwan)

Relationship between heat index and mortality of 6 major cities in Taiwan

[Sung et al., 2013]

Warming and mortality projection (AR5) [TCCIP, 2015]

IPCC AR5 RCP8.5 (2016-2035)

Climate change is <u>not</u> a new threat to human health

- ~ Climate change will amplify existing <u>hazards</u>, <u>deficits</u>, and <u>inequities</u>, jeopardizing the already <u>low status</u> of population health and well-being of disadvantaged population ~
- ~ It is important to identify those populations most at risk of adverse effects from climate changes, to reduce their <u>vulnerability</u>~

[McMichael, 2004]

Health professional have a vital part to play in tackling climate change

- Poverty reduction and reductions in inequities
- Vulnerability and exposure reduction in high-risk populations
- Food security in poor countries
- Communication of climate risks and community engagement for local solutions
- Development of climate resilient, lowcarbon health systems

Adaptation and climatesmart health systems

Health impacts

Reduce greenhouse gas emission

Strengthening the health sector's contribution to decision making across sectors at local and national levels adaptations.

International multidisciplinary approach Think globally, Act locally

Health Impacts of Climate Change on Vulnerable Populations: Indigenous Peoples

Certain people and communities are especially vulnerable, including children, the elderly, the sick, the poor, and some communities of color (Melillo et al., 2014)

Determine vulnerability of indigenous health systems

1. Poverty

- 2. Limited technological capacity
- 3. Socio-political values and inequality
- 4. Constrained institutional capacity

5. Information deficit

(Ford et al., 2010)

Climate Change and Health Impact and Adaptation Strategies for Indigenous Community in Southern Taiwan

[Wu et al., 2016, NSC105-23420-H-309-001]

2016/3/14

2016/3/14

