

Projection of Taiwan Climate

members of TCCIP Team 1 and 2

行政法人國家災害防救科技中心 National Science and Technology Center for Disaster Reduction

tccip.ncdr.nat.gov.tw

Approaches

Statistical Downscaling (all RCP model projections)

Projection of Key Phenomena

- \rightarrow Identification of key circulation characteristics
- \rightarrow Check model performance
- \rightarrow Selection of models
- → Projection of selected models: phenomenon and associated circulation changes (mechanism understanding)

Dynamical downscaling

- → RCP8.5 SST changes
- → Time-slice experiments (present vs. end of century) using high-resolution AGCMs (HiRAM, MRI, CAM5)
- \rightarrow a. Changes in certain phenomena (TC, frontal activity, ISO/TC, etc.)
 - b. Dynamical downscaling of the whole period and extreme/mesoscale events using WRF (e.g., TCs, diurnal cycle, etc.)

TILLIE 基本 臺灣氣候變遷推估與資訊平台

- Extreme Indices(Temperature)

NCOF

TELEVICE 臺灣氣候變遷推估與資訊平台 Talwan Limate Change Projection and Information Platform

- Extreme Indices(Precipitation)

NCOF

→ Wet gets wetter, dry gets drier; larger wet-dry seasonal contrast; higher risk for drought

Model Projections

Phenomenon Metrics

- frontal activity
- spring rainfall
- Mei-yu extreme rainfall
- heat wave
- cold surge
- afternoon thunder storm activity

Model Performance Metrics

• CMIP5 CGCM and high resolution model output data analysis

■ ■ 臺灣氣候變遷推估與資訊平台

TILLIE 基本 臺灣氣候變遷推估與資訊平台

Spring rain distribution

■ La La 臺灣氣候變遷推估與資訊平台 Taiwan Climate Change Projection and Information Platform

- Dynamic Downscaling

- Future Change

• 179 days in the 50 Mei-yu seasons are identified on which at least at one station saw the extreme event. The cases influenced by typhoons do not count.

The Large-scale Circulation Index: SWFI

- 1. Select the days with favorable vorticity condition during May and June: positive vorticity over S. China and Taiwan (red grid) and negative vorticity over the SCS and Philippine Sea (blue grid)
- 2. Calculate the **SWU** the mean U850 of the grids with strong vorticity gradient (green grid)
- 3. Determine **SWUc** on the multi-year climate basis: in this study - the **median** value of **SWU** in 50 years (1951-2000)
- 4. SWFI is defined as the number of days during May and June that satisfying the criteria of 850-hPa Vorticity and SWU >= SWUc

7/10 models project future increase in occurrence of extreme rainfall at the end of century

依據10個IPCC氣候模式資料推估未來臺灣梅雨季極端降雨事件 頻率:以目前氣候(1986~2005)極端降雨事件累積機率第75百分 位為門檻值,各模式於未來情境下三段時期高於門檻值的比例 相對於25%的差異,負值表示極端事件發生率降低。

RCP8.5(%)	ACCESS_10	BNU_ESM	CMCC_CM	CNRM_CM5	HadGEM2_CC
Early	-19	-2	+3	-6	-2
Mid	-10	-6	+4	-11	+4
End	-3	-11	+3	+1	+2
RCP8.5(%)	IPSL_CM5A_MR	MIROC5	MPI_ESM_MR	MRI_CGCM3	NorESM1_M
Early	-6	+15	+18	-17	+4
Mid	-13	+15	-6	-10	-4
End	-16	+1	+16	+12	+15
RCP4.5(%)	ACCESS_10	BNU_ESM	CMCC_CM	CNRM_CM5	HadGEM2_CC
RCP4.5(%) Early	ACCESS_10 -10	BNU_ESM +4	смсс_см +6	CNRM_CM5 -9	HadGEM2_CC +2
RCP4.5(%) Early Mid	ACCESS_10 -10 -6	BNU_ESM +4 +14	СМСС_СМ +6 +3	CNRM_CM5 -9 -3	HadGEM2_CC +2 -5
RCP4.5(%) Early Mid End	ACCESS_10 -10 -6 -8	BNU_ESM +4 +14 -16	CMCC_CM +6 +3 +2	CNRM_CM5 -9 -3 +7	HadGEM2_CC +2 -5 +21
RCP4.5(%) Early Mid End RCP4.5(%)	ACCESS_10 -10 -6 -8 IPSL_CM5A_MR	BNU_ESM +4 +14 -16 MIROC5	CMCC_CM +6 +3 +2 MPI_ESM_MR	CNRM_CM5 -9 -3 +7 MRI_CGCM3	HadGEM2_CC +2 -5 +21 NorESM1_M
RCP4.5(%) Early Mid End RCP4.5(%) Early	ACCESS_10 -10 -6 -8 IPSL_CM5A_MR -8	BNU_ESM +4 +14 -16 MIROC5 +8	CMCC_CM +6 +3 +2 MPI_ESM_MR +10	CNRM_CM5 -9 -3 +7 MRI_CGCM3 -13	HadGEM2_CC +2 -5 +21 NorESM1_M -1
RCP4.5(%) Early Mid End RCP4.5(%) Early Mid	ACCESS_10 -10 -6 -8 IPSL_CM5A_MR -8 -6	BNU_ESM +4 +14 -16 MIROC5 +8 +20	CMCC_CM +6 +3 +2 MPI_ESM_MR +10 +13	CNRM_CM5 -9 -3 +7 MRI_CGCM3 -13 -6	HadGEM2_CC +2 -5 +21 NorESM1_M -1 -3

- Circulation

DR

- Observation

Significant regional contrast in observed trend (see Huang et al., JGR, 2015, for mechanism)

- Present Climate (Validation)

- Future Projection(1)

- Downscaling produces more consistent projection between models
- Projection (SW Taiwan):
 - total CAR rainfall and frequency: reduced;
 - no consistent results for rainfall strength
- Reduced low-level convergence and enhanced stability

MJO與台灣地區冬春季 (NDJFMA)降兩機制探討

Journal

Hung C.-W., H.-J. Lin, H.-H. Hsu, 2014: Madden–Julian Oscillation and the Winter Rainfalls in Taiwan, J. Climate.

Conference

Hung C.-W., H.-J. Lin, H.-H. Hsu, 2014: Madden–Julian Oscillation and the Winter Rainfalls in Taiwan. AOGS 11th Annual Meeting (AOGS2014), 2014.7.28-8.1, Sapporo, Japan. Hung, C.-w., and H.-J. Lin, 2013: Impacts of the Madden-Julian Oscillation on the East Asian Winter Monsoon Rainfalls Observed in Taiwan. 2013 International Geographical Union (IGU) Kyoto Regional Conference, 2013.8.4-9, Kyoto, Japan. 林和駿、洪致文, 2013: 季內尺度MJO對臺灣冬半季降水的影響。102年天氣分析與預 報研討會, 2014.5.13-15, 中壢。

TELELE 臺灣氣候變遷推估與資訊平台 Talwan Linate Change Projection and Information Platform

TILLIE 臺灣氣候變遷推估與資訊平台 Taiwan Elimate Change Projection and Information Platform

MJO影響台灣冬半季降雨的兩種機制概念圖。深灰色跟淺灰色分別代表上升及下沉區,"A"跟"C"分別代表反氣旋及氣旋,"MJO"表示MJO對流中心。大箭頭表示MJO的移動方向,小箭頭表示往台灣附近的南來水汽供應,相位2及相位3&4波列的位置分別用灰色及黑色表示。

- Definition

Occurrence of cold surge :

The percentile rank of daily minimum temperature is lower than 10th percentile or the rank of 48-hour temperature drop is higher than 90th percentile.

End of cold surge:

The percentile rank of daily minimum temperature is higher than 20th percentile or the rank of 24-hour temperature rise is higher than 90th percentile.

Cold day:

The day of daily minimum temperature below 10th percentile. (Lu and Lee

- Summary (Cold Surge)

- 5個百年測站資料分析結果顯示,近50年、100年的寒潮頻率以及低溫日數均有顯著的減少趨勢,進一步分析台北站冬季逐月寒潮次數發現,1月份寒潮發生頻率增加,12月及2月份則呈減少的趨勢,其中以2月份減少較明顯。
- 台北站寒潮頻率長期變化與西伯利亞高壓強度 (Suda, 1959 ; **E, 1978 ; Ding and Krishnamuti, 1987**)、NAO指 數 (Wu and Wang, 2002 ; Chang et al., 2006 ;吳與洪, 2008)、熱帶太平洋海溫(許與陳, 1991 ; Zhang et al., 1997 ; Wang et al., 2000)有較好的相關性存在
- 22個CMIP5模式資料分析結果顯示,劇烈暖化情境下(RCP8.5),未來寒潮事件以及低溫日數均 為顯著的減少,模式中未來環流場改變同樣不利於寒潮發生(西伯利亞高壓、東亞主槽減弱、海 溫呈現ENSO Like pattern)。

SLP&850 hPa wind

Theta-w &850 hPa moisture flux

熱浪分析

55

0.2235486

0.5117876

0.5189768

0.5199130

0.7290627

0.7852129

0.8410165

1.174605

1.253578

1.969574

2.008175

1.46455

	Area1		Area1+2		Area1+2+3	
	СТХ	EHF	СТХ	EHF	СТХ	EHF
20C V2	0.46	0.61	0.76	0.74	0.73	0.73
ACCESS1.0	0.60	0.21	0.40	0.47	0.33	0.60
ACCESS1.3	0.64	<u>0.08</u>	0.54	0.49	0.57	0.40
BCC-CSM1-1-M	0.54	0.17	0.47	0.49	0.52	0.44
CMCC-CM	0.65	0.62	0.67	0.67	0.68	0.67
CMCC-CMS	0.41	0.55	0.50	0.68	0.53	0.64
CNRM-CM5	0.34	0.50	0.68	0.66	0.63	
IPSL-CM5A-MR	0.25	0.61		0.66		0.65
MIROC5	0.30	0.24	0.15	0.13	0.20	0.15
MPI-ESM-LR	0.46	0.53	0.62	0.63		0.60
MPI-ES <mark>M-M</mark> R	0.49	0.49	0.44	0.63		
MRI-CGCM3	0.60	0.60	0.71	0.77	0.77	0.71
NorESM1-M	0.28	0.31	0.19	0.24		

Table3 Correlations between temperature over Taiwan and the A1, A1+A2, and A1+A2+A3 geopotential height anomaly indices for the observation and 12 CMIP5 models. All correlation passed the 90% significant confidence except ACCESS1.3 (EHF) in Area1.

- Observation (1)

- Observation(3)

- 午後降雨頻率之區域 性差異與區域動力 (如輻散場)和熱力(如 穩定度)條件的變化 有關
- 午後降雨強度之區域 性差異與水氣的趨勢 變化有關

Huang et al. (JGR, in press)

▼ 2 2 2 臺灣氣候變遷推估與資訊平台

- Future Projection(2)

- Future Projection(3)

以WRF-HiRAM進行未來CAR之推估: 華南南部地區與臺灣西南部推估結果相似,其它區域則 與台灣推估結果不同。

CAR amount; WRF-HiRAM

SWT · SSC (CAR rainfall ↓) Frequency ↓ (convergence ↓ · instability ↓)
NSC · ELZ (CAR rainfall ↑) Intensity ↑ (humidity ↑)
WLZ (CAR rainfall ↑) Frequency ↑ Intensity ↑ (convergence ↑ · humidity ↑)

Huang et al. (submit to TAO)

61

– Issues and Phenomenon Metrics

Filed	Impact	Various	Possible Linkage	
Agriculture	Tmin(Feb)<10°C, rice raising seedling	Cold Surge	Sea Level Pressure、SST、200hPa Wind	
	Tmax(May)>35°C reduce rice 1 st production	Extreme High Temperature	Subtropical High	
	Rice lodging(Pr >130[mm])	Extreme Rainfall	Extreme rainfall in Mei-yu and Typhoon	
Drought	Water resource management	Seasonal Rainfall	Numbers of front < Low level circulation < ENSO < PDO	
Public Health	Dengue fever	Monthly Temperature	Monthly Temperature Variance	
	Cardiovascular disease	Extreme High Temperature	200hPa Geopotential High	
	Infectious disease in flood area(hepatitis A enterovirus \ dysenteria)	Extreme Rainfall	Typhoon Numbers 、Subtropical High、850hPa vorticity	
Disaster	Disaster on slopeland	48 hrs Extreme Rainfall	Typhoon Numbers 、Subtropical High 、850hPa vorticity	

62

Blue Histogram: the U850 value on the 179 days of the extreme cases and the 850-hPa vorticity satisfies the positive over Taiwan and negative over the Philippines condition.

SWUc: the U850 criterion of the southwesterly winds is chosen as the **median** of the "gray histogram", which is **4 m/s**. Among the 179 days of the extreme cases, 52% of the cases can pass the criterion of SWU >= SWUc.

模式挑選-梅雨季氣候特徵 ·台灣附近區域(100E-140E, 5N-35N)梅雨季雨量的氣 Skill Score S 候空間分佈特徵

NCOR

(Taylor, 2001)

Circulation ·台灣附近區域(100E-140E,5N-35N)梅雨季850hPa風 場季節變化的氣候空間分佈特徵

(Taylor, 2001)

Skill Score S

