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Introduction

-~ Estimation of extreme precipitation is-a important task to
avoid disasters like floods, land-slide, and so on.

~ This study focus on rare events such that they occur once,
on average, in a given years (called return period)

~ Analyses of extreme precipitation are usually based on
annual maxim@m of ‘daily precipitationy(calledR1d
hereafter).

- However, observation or previous climate experiments yield
a few samples of R1d (the order of tens or hundreds).

» Using d4PDF dataset, which has the data of the order of
thousands, we improve the reliability of the estimate of
extreme precipitation and reveal their statistical features.



Design of d4PDF experiments
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Extreme precipitation (once a year - R1d)
from regional model of d4PDf

Ensemble mean of present R1d (mm) and future change (mm)
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» Although R1d tends to decrease along the latitude in this domain,
large values of R1d emerges on the land regions, particularly in

Taiwan and on the coast of Pacific ocean of Japan islands.
~ Geographic distribution is well reproduced thank to the downscaling
to the regional model.




Return levels of extreme precipitation

Empirical cumulative distribution function (CDF) of R1d
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» The estimation of extreme precipitation is difficult with small sample numbers.
~ To solve this difficulty, we have two choices:
(A) well-known functions (e.g., GEV) are fitted to empirical CDF (assumption
about the characteristics of population of R1d data)
(B) increase the number of samples.



Two method to calculate a return level
when given a return period

(A) GEV (generalized extreme value) method
~ Fit a GEV function to empirical CDF and read the precipitation value of
the intersection point of the GEV function and the cumulative

probability line which is determined by given return period.
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(B) Non-parametric method
~ Read the precipitation value‘of intersection point of the empirical CDF
and the cumulative probability line directly.
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Estimation from the non-parametric method is more reliable than that
from the GEV method because no assumption about the statistical
features of the R1d is made.







Results of return levels of precipitation

(at Taipei for example)
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> GEV method and non-parametric methods yield approximately
the same results about the return levels, which implies that the
assumption of GEV fitting is reasonable for Taipei R1d data.

> Both methods project a increase of the extreme precipitation.




Benefits of large ensemble members from d4PDF
at Tokyo as an example

All ensemble members of d4PDF
(Past: 3050 years Future 5490years)

One experiment
(61 years samples)
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Confidence intervals of return levels shrink thanks to the large samples from
d4PDF, leading to the reliability of estimation and enabling the detection of

future changes of extreme precipitation in a statistical sense.




Geographical distribution of extreme precipitation

(left) Present return levels (mm) with 100 years return periods and
(right)their future changes
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> The geographical pattern of the 100 years return levels is similar to that of R1d.

» However, the value of precipitation is much larger.

> The dynamical downscaling enables the analyses of extreme precipitation
focusing on the detailed geographical distribution e.g., orographic precipitation.



Validity ‘'of the GEV assumtion



Comparison between the results of two methods:
GEV method and nonparametric method

-

(Left) Relative difference (%) of 100 years return levels between the results by GEV

method and nonparametric method.
Red area indicates under-estimate of GEV method and blue area is over-estimate.
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> The reliability of GEV method is relatively good around Japan islands and Korean
peninsula.

» The GEV method tends to yield overestimated return levels on the ocean.




Comparison between the results of two methods:
GEV method and nonparametric method

(Left) Relative difference (%) of 100 years return levels between the results by GEV
method and nonparametric method.
Red area indicates overestimation of GEV method and blue areas are underestimation.
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> The reliability of GEV method is relatively good around Japan islands and Korean

peninsula.
» The GEV method tends to yield overestimated return levels on the ocean.




Why the fitness of GEV to R1d is low?

Shape parameter & of GEV (right figure); large § means _heavy tailed GEV
distribution.
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The areas where overestimation of return levels are observed are overlapped with
those of high shape parameters.

(i) Bad fitting of GEV to R1d distribution

(ii) Artificial large shape parameter and heavier tail of GEV.

(iii) Overestimation of return levels with large return periods.



Why the fitness of GEV to R1d is low? (cont.)

» R1d is not a perfect extreme value.
The assumption that a value is followed by GEV is that this value is the
maximum value of large enough samples.

» This is considered as follows, on land; orographic extreme precipitation
invariably happens at least once-in a year, while on ocean, extreme

precipitation does not occur without a direct hit of a tropical cyclone

GEV fitting test on‘the southern ocean

R10d : maximum daily precipitation
over 10 years, not 1 year (R1d)

» R10d is fully followed by GEV
distribution and matches the

results of nonparametric
method.

1400

Return level (mm)

200
10

—
o
o
-

8O0 ]

_ Future climate

10! 10° 10°
Return period (year)



Extreme precipitation with 1000 years

return levels is a rare event?

~ Return levels are defined as a local estimation of extreme precipitation.

- The precipitation events usually do not extend to whole target areas (ex. Japan
islands) and are limited in a small regions (e.g. bottom figure)

» Considering some areas, they happen more frequently somewhere in the areas
than once for 1000 years.

50°N

AOON bl o oo e

35°N.erT“4mmmmwmw“

30°N

p LT V) —. m_mmr_mmm“imm“_mmm_mmmmmem“mmm“_mmmimmmmm

20°N Lo

45°N:im:mmimm_mmmm““mm£m

900

800

700

41600

1500

4400

300

200

100

120°E 130°E 140°E 150°E 0

Spatial distribution of precipitation
(only locations of R1d
precipitation) at the day when
maximum precipitation over 5000
years data is obtained.



Regional return periods
(local return levels = 1000year in future experiment)

—y nx=1, Only 5 events
E.. ny=1 ¥ in each grid
® nx=1,
g ny:Z ik
g s
) W
[S—
- ¢
= 3
3
———
Days in each sample years
————————————-

Sample of years
Present: 3050 years, Future:5490 years



40°N

30°N




How many days do we watch a news about
extreme precipitaion with X return periods?
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Local return period =
100 years (left)
and 200 years (right)



500 years (left)

Local return period
and 1000 years (right)
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Summary and conclusion

» We estimate the present and future extreme precipitation using d4PDF
regional data, which enables the calculation of the very extreme precipitatio
n of the order of 1000 years and its spatial distribution.

» Non-parametric method yields reliable estimation of extreme percipitaion
without any assumption-about the statistical characteristics of extreme
preciptaiont.

» The present study shows that the validity of the GEV method around Japans
e islands areas is high. On the other hand, the. GEV method yield overestimat
ed values of large return levels.on the ocean, which suggests the use of alter
native functions to fit the R1d data (logarithimic normal, exponential etc.).

» The method using varisou fitting functions have technical problem about
which function:should be used; non-parametric method has an advantage
over them.

» Non-parametric method enables the domain-accumulated frequency of extr
eme precipitation when given a return periods.



Thank you for your attention
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Climatic Hazards and Risk Assessment
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Design of d4PDF experiments

Surface temperature of the whole world mean
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The database which express the 5,400 patterns in +4°C world

_ Dynamical downscaling >

Data amount: 1.2 PB
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MRI-AGCM Grid Grid size: 20km
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6 type C.C. trends in SST without trend x 15 ensembles which
CMIP5 experiments (blue line; COBE-SST2) count the uncertainty
(AT; Shiogama et al. 2010) of observed value

C.C. trends is 1** mode of EOF ( 6T)



Change of TC genesis of the whole world
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10 years return periods daily precipitation
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* Changes of such heavy precipitation become clear as the member increase
* Such heavy precipitation increase in the Eastern Pacific, India, and Western Africa

Mizuta (2015 MSJ fall meeting)




Summary ‘
d4PDE

For RISK assessment of C.C., we have to thin
k how to calculate the C.C. by using.our mod
el.

Here we have two schemes to get useful dat
a for impact study researchers.

One method is to'calculate’'so many ensembl
e number toget PDF of the phenomena.

We introduce here d4PDF project.



The database which express the 5,400 patterns in +4°C world
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6 type C.C. trends in SST without trend x 15 ensembles which
CMIP5 experiments (blue line; COBE-SST2) count the uncertainty
(AT; Shiogama et al. 2010) of observed value

C.C. trends is 1** mode of EOF ( 6T)
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