Statistical Downscaling over Taiwan: Current Daily Data Products and Future Developments

Cheng-Ta Chen¹, Shou-Li Lin¹, Yu-Shiang Tung² and Chao-Tzuen Cheng² ¹National Taiwan Normal University, Department of Earth Sciences ²National Science and Technology Center for Disaster Reduction

Taiwan Climate Change Projection Information and Adaptation Knowledge Platform

推估資訊與調適知識平台計書

Downscaling

Downscaling Objectives:

- (1) Bridge/conduit from large to small scales
- (2) Correct systematic model biases
 - [too cold/warm, wet/dry, etc.]
- **Statistical Downscaling Advantage:**
- (1) Cheaper to generate
- (2) Easy to test different algorithms
 - [Synchronous, Asynchronous, Map-typing, etc]
- **Statistical Downscaling Disadvantage:**
- (1) No clear theoretical or empirical choice for the best
- (2) Stationarity assumption

Statistical Downscaling

MOS

Statistical Downscaling for Extremes

Need high-impact and high-resolution climate information for:

- assessing environmental and societal relevant climate change impacts
- developing adaptation strategies and mitigation efforts

MOS

NCD

TCCIP Observation Gridded Data

- Integrate data of different institutes (CWB, WRA, IA, CAF, CAA...more than 1400 stations).
- Digitalization and Homogenization for long-term station records (1900-2017)

Data scattered in different institutes

Sources/Distributions of Rainfall observations

Red dots: CWB Auto-gauge Green dots: Irrigation Associations Golden dots: CWB+CAF+CAA Blue dots: Water Resources Agency

Require long-term high-resolution observations

Downscaling Method

Daily Data Bias Correction (Quantile Mapping)

OBS8.95p = $\sum Pr_{obs121st\cdot125th}$ / 5 **Model**8.95p = $\sum Pr_{model121st\cdot125th}$ / 5

Target Day 1961 12/4 Model Bias Correction

Model_BCpr₁₂₀₄=(Modelpr₁₂₀₄X OBS8.95p / Model8.95p)

Model_BCT₁₂₀₄ = (ModelT₁₂₀₄ - Model8.95p + OBS8.95p)

Rx1day from CMIP5 output interpolated

CMIP5 Model (Interpolation) RX1DAY

Rx1day from downscaled CMIP5

MOST

Wet day frequency from CMIP5 output interpolated

CMIP5 Model (Interpolation) RR1 (wet day frequency)

MOST

Wet day frequency from downscaled CMIP5

CMIP5 Model (Downscaled) RR1 (w31b10)

Projected Future Change of Extreme Indices

CMIP5 Model Projected Future Change of Rainfall Related Extreme Indices (Model Median, 2081-2100) Based on Downscaled Daily Data

MOST

Atlas of Future Projected Changes of Extreme Indices

(mm)

區域	情境	世紀末 rx1day 百分比變化 (%)						
		最小	10	25	50	75	90	最大
	rcp26	10.0	10	25	10.5	15	90	0.1.7
北 北 基	rop15	- 12.8	- 6.0	0.1	10.5	24.5	29.4	34.7
	10040	- 10.1	- 4.5	4.8	17.1	27.9	35.9	51.4
	rcp60	- 3.7	1.6	15.9	24.9	33.6	49.2	65.7
	rcp85	- 16.6	0.1	13.1	29.1	45.3	66.8	118.6
桃園	rcp26	- 20.2	- 3.0	3.9	12.5	22.0	28.6	39.0
	rcp45	- 11.6	- 5.4	7.0	19.2	29.4	36.9	43.1
	rcp60	1.5	6.1	15.8	26.7	33.2	45.0	64 4
	rcp85	21.5	6.3	17.1	20.7	48.0	65.0	120.6
新	rcp26	-21.0	0.0	5.0	45.2	40.0	00.0	50.0
	rcp45	- 24.0	-1.3	5.2	15.3	24.0	32.0	50.9
竹	rcp60	- 12.4	- 5.7	5.5	20.7	34.1	41.5	54.5
	rcp85	3.0	9.3	19.2	29.7	36.2	53.8	64.4
	repos	- 22.1	2.3	14.2	34.5	52.5	76.4	153.7
苗栗	rcpz6	- 27.3	-0.5	5.3	13.6	23.7	35.1	51.2
	rcp45	- 11.4	- 6.3	3.0	17.3	34.1	41.6	54.1
	rcp60	6.5	10.1	18.8	28.1	36.1	51.0	54.8
	rcp85	- 23.1	- 2.4	15.5	35.9	50.7	71.7	138.1
臺中	rcp26	- 23.6	0.6	5.0	11.4	25.1	32.3	42.7
	rcp45	- 11.6	- 6.0	2.7	12.7	33.9	41.4	55.0
	rcp60	47	9.1	19.5	27.1	36.3	45.4	50.2
	rcp85	- 23.8	- 3 3	17.8	32.7	49.6	72.2	117.8
<u> </u>	rcp26	20.0	- 5.5	2.0	10.5	22.0	26.0	44.0
彰 化	rcp45	- 20.6	-0.5	2.9	10.5	22.2	34.8	41.6
	rcp60	- 17.9	- 3.8	3.1	11.1	28.6	39.3	44.9
	10085	1.8	3.6	16.1	22.3	32.4	43.8	46.8
	10083	- 24.5	- 3.7	19.5	28.8	45.1	75.2	105.4
南 投	rcp26	- 19.1	- 0.7	4.7	10.9	25.5	35.0	43.3
	rcp45	- 13.6	- 5.5	3.4	12.9	33.9	43.2	57.4
	rcp60	3.4	8.5	18.6	28.0	35.8	46.3	49.9
	rcp85	- 19.8	- 2.8	16.1	31.7	53.6	79.8	106.7
雲林	rcp26	- 15.6	- 1.7	4.6	9.3	21.6	34.6	40.6
	rcp45	- 16.2	- 5 3	23	10.5	25.2	40.7	50.5
	rcp60	- 4 1	0.3	13.4	20.6	32.1	46.6	50.6
	rcp85	- 22.9	- E E	19.4	20.0	44.0	70.0	100.6
嘉	rcp26	- 23.8	- 5.5	18.1	20.7	44.9	78.3	100.0
	rcp45	- 15.2	- 2.0	3.8	8.7	24.9	33.4	39.3
	rcp40	- 13.3	- 4.3	3.4	11.3	27.5	40.1	52.2
	10085	- 6.7	- 2.2	12.9	22.4	31.7	45.0	49.4
L	10085	- 21.5	- 4.7	13.3	31.0	48.7	80.7	100.8
臺南	rcp26	- 11.0	- 2.0	2.2	6.6	21.7	32.5	37.9
	rcp45	- 13.5	- 3.4	2.4	9.9	21.1	36.9	49.2
	rcp60	- 11.4	- 7.4	14.2	21.4	29.9	41.0	45.5
	rcp85	- 23.1	- 2.3	16.1	28.1	42.1	68.8	99.3
高雄	rcp26	- 11.7	- 4, 9	1.6	6.1	22.7	32.7	43.0
	rcp45	- 12, 1	- 6. 6	0.0	7.9	21.8	35.4	52.4
	rcp60	- 9.8	- 3 1	11.6	22.6	29.6	38.9	41.0
	rcp85	- 24 1	- 2 3	13.2	28.7	45.3	64.3	90.8
—	rcp26	12.0	2.0	1.1	7.2	22.2	22.6	30.7
屏東	rcp45	- 12.9	-3.9	1.1	1.2	22.2	32.6	59.7
	rcp60	- 15.4	-9.0	1.0	9.6	20.6	36.1	53.9
	rcp85	- 10.3	- 0.1	11.3	21.1	28.4	35.2	39.4
	10000	- 26.2	3.9	15.7	26.4	40.7	57.4	79.3
宣 蘭	10026	- 12.4	- 3.1	1.1	7.9	25.3	30.3	38.3
	rcp45	- 9.8	- 4.9	3.3	14.0	28.1	35.1	64.4
	rcp60	- 5.8	0.4	16.5	25.3	33.7	50.1	59.5
	rcp85	- 21.0	- 4.8	10.6	30.0	48.9	75.6	100.3
花蓮	rcp26	- 11.2	- 3.5	1.7	8.3	23.6	30.6	39.6
	rcp45	- 15.7	- 5.4	4.2	14.1	29.3	40.3	62.6
	rcp60	- 3, 1	3.8	16.6	25.5	35.9	51.7	57.9
	rcp85	- 19.7	- 1.5	13.5	30.8	47.9	74.1	95.7
臺東	rcp26	- 9.4	- 5.6	-0.6	6.4	22.5	31.2	39.5
	rcp45	- 20.2	- 7.2	17	0.4	26.5	27.7	47.9
	rcp60	- 20.3	-7.3	0.5	9.7	20.5	31.1	47.8
	rcp85	- 3.4	3.4	9.5	19.8	31.0	41.6	67.0
澎 湖	1000	-21.7	2.3	13.5	27.1	45.1	61.2	81.3
	1Cp26	- 10.3	-4.2	3.1	12.3	21.7	32.4	39.8
	10045	- 6.2	- 2.3	6.8	11.3	20.2	36.3	45.4
	rcp60	- 10.8	0.6	11.8	20.4	35.2	42.6	53.1
	rcp85	- 18.8	2.8	20.6	29.2	45.2	68.5	120.5

MOST

What's Next?

•New Statistical Downscaling Methods:

- (1) BCCA (Bias-Correction/Constructed Analogues; Maurer et al. 2010) combines spatial aggregation and daily quantile mapping with spatial information from a linear combination of historical analogues
- (2) QMAP (Quantile MAPping; Gudmundsson et al. 2012) applies quantile mapping to daily GCM/RCM outputs that have been interpolated to the high-resolution grid using the climate imprint method of Hunter and Meentemeyer (2005) – aka BCCI
- (3) BCCAQ (BCCA with Quantile MAPping reordering) is a modified BCCA using QMAP in addition to BCCA post-processing (Cannon et al., 2015)
- Use Dynamical Downscaling Result as Pseudo-Observation to:
 - (1) Compare the Performance of Different Statistical Downscaling Methods.
 - (2) Test the Stationarity Assumption under Climate Change.

Dynamical downscaling from ~25km to ~5km

Perfect Model Experimental Design

PERFECT MODEL EXPERIMENTAL DESIGN In The Perfect Model World

Now we can compare skill past vs. skill future to assess the validity of "The Stationarity Assumption"

PERFECT MODEL EXPERIMENTAL DESIGN In The Perfect Model World

Statistical vs. Dynamical Downscaling

Statistical vs. Dynamical Downscaling

MOST

Daily Rainfall Comparison Examples

Percentage of time when r(MRI/WRF,ESD) is larger than r(MRI,ESD)

MRI 1979-2003 Mean Absolute Error

Percentage of time when MAE(MRI/WRF,ESD) is smaller than MAE(MRI,ESD)

Percentage of time when r(MRI/WRF,ESD) is worse than r(MRI/WRF,MRI)

MRI 1979—2003 Mean Absolute Error

Percentage of time when MAE(MRI/WRF,ESD) is larger than MAE(MRI/WRF, MRI)

Stationarity Assumption

MOS

Pattern correlation for area mean daily rainfall >1mm

Stationarity Assumption

MOS

Mean Absolute Error of Daily Rainfall

Stationarity Assumption

Mean Absolute Error of Daily Rainfall

Ratio > 1 \rightarrow "Stationarity assumption" violated (larger errors in future)

Summary and Concluding Remarks

- Statistical approach is a relatively simple and cheap alternative to capture full model and scenario uncertainties.
- Statistical downscaling methods applied to CMIP5 data archive can effectively remove the model bias and adjust spatial scale dependence of extreme indices.
- Using dynamical downscaling result as surrogate observation for daily data statistical downscaling, different statistical downscaling methods will be compared for the their relative strength in reproducing "pseudo-observation" and tested for their validity of stationarity assumption under climate change.

