2019 International Workshop on Climate Change: TCCIP2019 October 22-24, 2019 (Taipei)

Future Changes in a Tropical cyclone in the Midlatitude Regions: Downscaling simulations from d4PDF data using a 4-km-mesh nonhydrostatic model

TOUGOU-C

Sachie Kanada^{*1,2}, Kazuhisa Tsuboki^{*1}, Izuru Takayabu^{*2} 1: Nagoya University, 2: MRI/JMA

Background

 TC translation speed has decreased over the period 1949-2016 (, particularly, in the WNP and latitudes higher than 25N)

→suggested potential changes in local rainfall totals in the warming climate (Kossin 2018)

- PGW experiments on Typhoon Chanthu (2016) indicate that, in the warming climate,
- ✓ the typhoon traveled northward at relatively slow translation speeds
 ✓ more rainfall for longer period

(Kanada et al. 2017)

Objective

<u>Goal:</u> To understand the impact of global warming on a TC in the midlatitude regions

- <u>Typhoons that travel over the</u> <u>WNP along Japan</u> as examples of TCs in the midlatitude regions
- <u>d4PDF</u>

The database made from a huge number of ensemble simulations for <u>the historical</u> (6000 years) and <u>future (5400 years)</u> <u>climates</u> for Policy Decision making for Future climate change (Mizuta et al. 2017, BAMS).

 <u>DDSs by a 4km-mesh non-</u> hydrostatic model (CReSS04)

d4PDF dataset and Method

d4PDF: Database for Policy Decision-Making for Future Climate Change

Databases produced by an unprecedentedly large ensemble of climate simulations with a 60 km atmospheric general circulation model (AGCM60) and dynamical downscaling with a 20 km regional climate model (NHRCM20) to obtain probabilistic future projections of <u>low-frequency local-scale events</u>.

Results (1): AGCM60

Four sets of AGCM60-experiments;

- historical climate simulation (HPB):

1951-2010, 100 members \rightarrow <u>6,000 years</u>

non-warming simulation: 1951-2010, 100 members
+2K future climate simulation: 2031-2090, 54 members

- +4K future climate simulation (<u>4K</u>):

2051-2110, 90 members \rightarrow 5,400 years

Frequencies and tracks of the targeted TYs

Table 1 Ensemble years and frequencies of the targeted typhoons. Those in the Regional Specialized Meteorological Center Tokyo best-track data between 1951 and 2017 were indicated by BT.

	Ensemble	Total	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.
	years	frequency							
BT	67	8	0	0	1	1	6	0	0
HPB	6000	187	1	0	2	45	84	49	6
4K	5400	125	0	0	1	26	63	32	3

Tracks of targeted TCs with the analysis region. Dots indicate MCP < 910hPa

Mean characteristics of the targeted TYs

Table 2 Mean minimum central pressure (MCP30), the latitude of MCP30 (Latmcp30), and northward translation speed (Vn) of the targeted typhoons in the analysis region.

		All	Jul.	Aug.	Sep.
MCP30	HPB	954	958	956	949
(hPa)	4K	945**	948*	946**	941**
Latmcp30	HPB	34.3	32.5	34.8	35.2
(Deg.)	4K	34.8*	33.0	35.0	35.5
Vn	HPB	0.30	0.23	0.27	0.39
(Deg.h-1)	4K	0.26**	0.24	0.22**	0.33**

**: 95% significant by two-sided t-test, *: 90% significant by two-sided t-test

In the 4K climate,

- Mean intensity \rightarrow Increases
- Latitude of MCP30 → Shifts northward
- Northward movement \rightarrow Decreases

 \rightarrow More intense typhoons with slower northward movement in the warmer climate.

Mean geopotential height and wind: Aug.

Monthly mean geopotential height and winds (August).

Monthly mean geopotential height and winds when the targeted typhoons appeared.

Mean geopotential height and wind: Aug.

All 4K simulation sets show similar decrease in the southerly

Results (2): DDS experiments by CReSS04

Four sets of AGCM60-experiments;

- historical climate simulation:

1951-2010, 50 members \rightarrow 3,000 years

- non-warming simulation: 1951-2010, 100 members
- +2K future climate simulation: 2031-2090, 54 members
- +4K future climate simulation:

2051-2110, 90 members \rightarrow **<u>5,400 years</u>**

DDS experiments by CReSS04

Table 3 Ensemble years and frequencies of the targeted typhoons.

24 - 14 - 18 - 18 - 18 - 18 - 18 - 18 - 1		Ensemble y	vears	rs Total frequencies					
WAS ISSUED	BT	67				8			
	HPB	3000				98			
	4K	5400		N SYAL IN COLUMN	A DAMAGE AND A DAMAGE	125	IN A STREET, STORE STORE AND A STREET		
Table 4 Mode	el descriptions								
	Model desc	riptions							
Model	Cloud Resolv Simulator (CRe 3.4	ing Storm SS) version	50° -	Don	nain of C 解析	ReSS		-	
Horizontal resolution	0.04 d Approximat)	eg. ely 4km)	40° -	K.	領域		5.	e la	
Domain	See right	figures		1 3105			and store		
Cumulus parametrizatio n	Non	e	30° -						
Cloud physics	Simple 2-mome	nt 3-ice bulk	20° ·	130°	140°	150°	130°	140°	150°
Boundary conditions	Every 6 hou NHRCM20 i	urs from n d4PDF		Tracks	of all typho	oons simul	lated by Cl	ReSS04.	150
SST	1D-slab oce	an model	~					<u> </u>	
Target	All typhoons i	n Table 3!							

Changes in TY intensity

Table 5 Mean minimum central pressure (MCP30), the latitude of MCP30 (Latmcp30) in the analysis region.

	MCF	P (hPa)	LATmcp (度)		
	HPB	4K	HPB	4K	
AGCM60	955	945**	34	35.4*	
CReSS04	957	948**	35	34.5	

**: 95% significant*: 90% significant byt-test

In the 4K climate,

- Mean intensity \rightarrow Increase
- Northward shift in Lat_{mcp} \rightarrow Not clear in CReSS04

The maximum intensity:

CReSS04: $922hPa \rightarrow 884hPa$ _{HPB} 4KAGCM60: $915hPa \rightarrow 901hPa$

Obs: 925hPa (Songda, 2016; Oscar, 1995)

Changes in TY structures

All typhoons whose centers were located in the boxes were composited. (Total frequencies were shown in each box)

Current typhoons become larger as traveling northward. Extratropical transition

Ty size

RMW

(km)

56^{*}

36

121

<u>4K typhoons</u> keeps compact structures.

Center-composite horizontal structures (35N-40N,142E-147E)

A compact typhoon with a smaller eye, but with more violent winds and intense precipitation around the storm center.

Center-composite vertical structures (35N-40N,142E-147E)

HPB climate

4K climate

Changes in 4K climate

A compact typhoon with axisymmetric structures and intense circulation around the storm center. (A)

Weakening of the jet streak (B)

Upper-level jets in center-composite typhoons

In the 4K simulations, the upper-level jet closely related to the extratropical transition of tropical cyclones is weakening \rightarrow The weakening of the upper-level jet allowed a typhoon to keep the axisymmetric tropical cyclone structures with intense winds and precipitation around the eye.

Summary

Current typhoons in the midlatitude

lose axisymmetric structures and expand strong wind regions as traveling northward

Causes of extratropical transition of TCs : Baroclinicity and low SST in midlatitude

✓ Reduction of baroclinicity (Ito et al. 2016)
 ✓ Increases in SST by 5°C (Mizuta at al. 2014)

4K typhoon in the midlatitude

4K climate

keeps compact and the axisymmetric tropical cyclone structures with intense winds and precipitation around the eye and travels northward in a slower translation speed

<u>Remaining issues to be solved...</u>

- 1. Analysis by the cyclone phase space
- 2. Changes in rainfall systems associated with the TCs (e.g. PRE)
- 3. Changes in characteristics of rainfall

.....

①緯度帯別 台風の平均構造

			sako cen Maxielizzania			**.1100 41/5000/11 上士辛
			30N-35N	35N-40N	40N-45N	#:緯度帯比較で99%以上有意
出大	MWS	HPB	35	34#	30#	←北上とともに衰弱
JÆC	m/s	4K	40 **	36 ** [#]	31#	←40Nまで有意に強
最大風 速半径	RMW	HPB	121	136 [#]	156#	←北上とともに有意に拡大
	km	4K	119	120 **	163 [#]	←40Nまで拡大せず
山心付近	W200	HPB	24	24	19	
の平均風速と降水量	m/s	4K	27**	26 **	20 *	し中心は近の国南一会
	P200	HPB	4.3	3.9	2.8	緯度で有意に増加
严小重	mm/h	4K	6.7 **	5.4 **	3.7**	EN 14 89 //
ws<25m/s	N25	HPB	7194	8946 [#]	6243	←北上とともにいったん拡大
の面積	km2	4K	10267**	9543	6743	←拡大せず

<u>温暖化気候下では、</u>中心付近の風雨を強めた、 より小さな目のコンパクトな台風に。

Mean characteristics of the targeted TYs

Table 2 Mean minimum central pressure (MCP30), the latitude of MCP30 (Latmcp30), and northward translation speed (Vn) of the targeted typhoons in the analysis region.

analysis region. Red boxes indicate that the difference in mean values was 99% statistically significant by two-sided t-test.