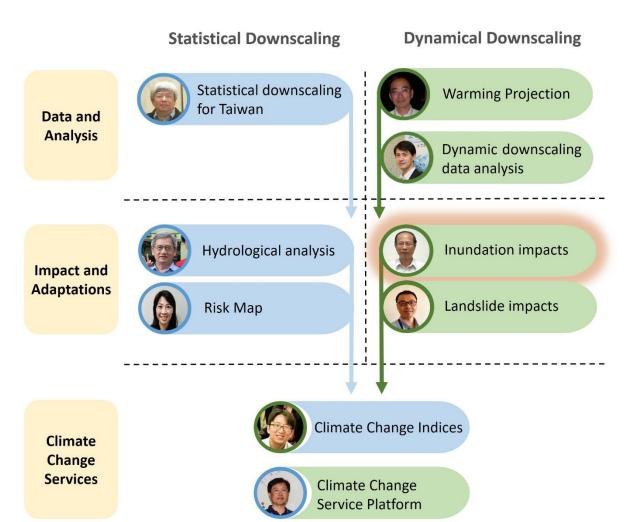
2019 International Workshop on Climate Change

Ensemble inundation impact assessment under RCP8.5 Scenario


Keh-Chia Yeh¹,

Yi-Hua Hsiao², Lun-Tsun Chen³, Chih-Tsung Hsu³, Yi-Chiung Chao², Hsin-Chi Li²

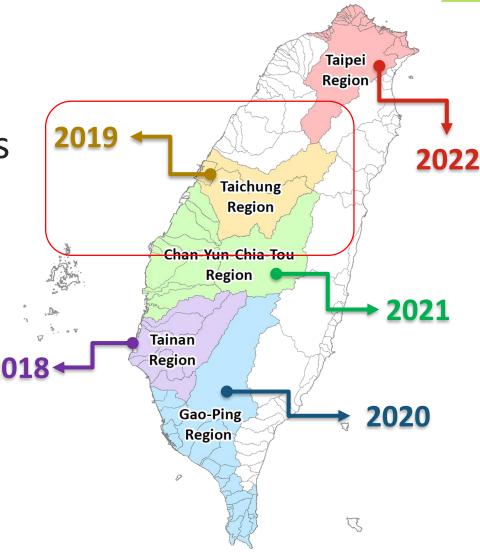
- 1. National Chiao Tong University, NCTU
- 2. National Science and Technology Center for Disaster Reduction, NCDR
- 3. National center for high-performance computing, NCHN

TCCIP Oral Presentation outline

Typhoon inundation in Taiwan

Outlines

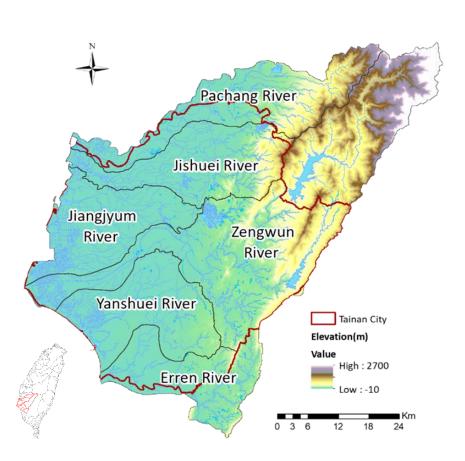
- Inundation impact assessment planning
- Assessment method
- Impact assessment results
- Development path and Future outlook

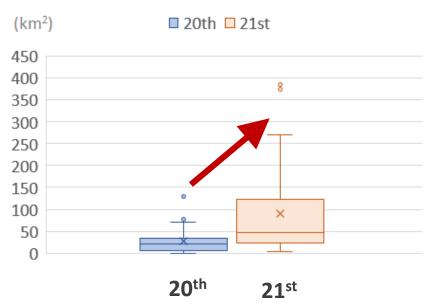

Inundation impact assessment planning

5 major inundation regions

Completion regions

■Tainan (2018)


■Taichiung (2019)


Tainan results overview

Mean inundation areas: 21st is drastic increasing

Inundation Area

Total areas ≒ 2,714km²

Assessment Method

Research framework

Climate Change Data (Team1)

Global climate change data

MRI-AGCM

(Mizuta et al. 2012)

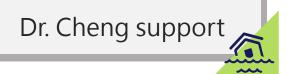
Regional climate change WRF-MRI

Typhoon definition and tracks (Vitart et al. 1997)

Bias correction

Ranked max. 24hr accumulated rainfall extreme typhoon events

Model Setup Data


Geographical data
Observated hydrological data

2D flooding Simulation

Simulation Analysis

Climate change data

[Dynamic Downscaling Data]

the end of the 20th century (Base period) 1979 – 2003yr

	KAKUSHIN	SOUSEI	Total
Typhoon events	82	84	166

the end of the 21st century (Future) 2075 – 2099yr

	WRF-MRI RCP8.5				
4 SST Grouping	c0	c1	c2	c3	Total
Typhoon events	45	23	55	46	169

^{*}SST = Sea Surface Temperature

2D flooding simulation model

SOBEK

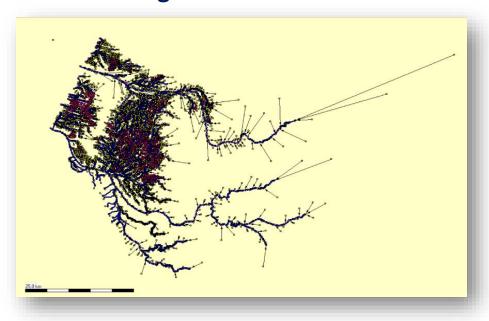
- Developed by WL | Delft Hydraulics in the Netherlands
- ■Integrates rivers, urban drainage systems and watershed management.

Continuity Eq.

$$\frac{\partial h}{\partial t} + \frac{\partial (ud)}{\partial x} + \frac{\partial (vd)}{\partial y} = 0$$

Momentum Eq.

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial v}{\partial y} + g \frac{\partial h}{\partial x} + g \frac{u|V|}{C^2 d} + au|u| = 0$$

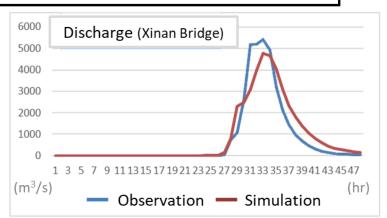

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + g \frac{\partial h}{\partial y} + g \frac{v|V|}{C^2 d} + av|v| = 0$$

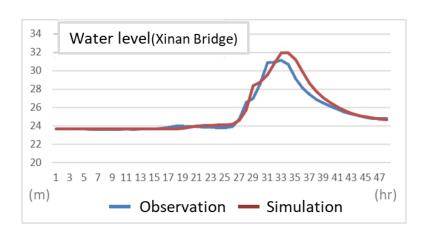
Model setup

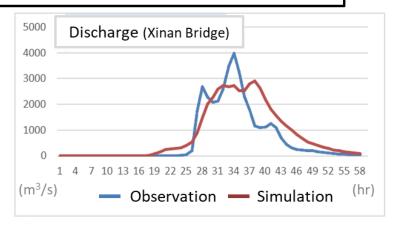
Taichung SOBEK model

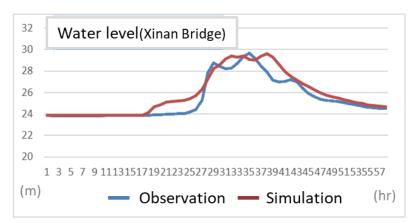
Model content

- Rainfall-runoff
- Overland-flow
- Main river's channel-flow
- Regional drainage
- Stormwater sewer
- Manhole
- Detention pond
- Water pumping station
- Tide (boundary condition)




Model validation – 1D


Discharge & Water level


Verification Test -Typhoon Kalmaegi

Verification Test –Typhoon Saola

Model validation – 2D

Inundation area error check

Typhoon Kalmaegi case

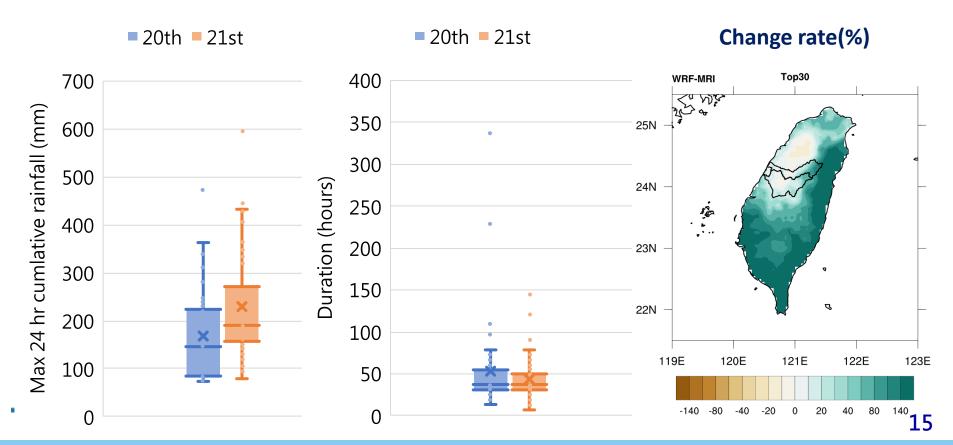
Verification Test	Area (m²)	
A_f	1,143	
A _o	1,113	
A_{c}	862	
A _a	61.8 %	

$$A_a(\%) = \frac{A_c}{A_f + A_o - A_c}$$

A_f: observation

A_o: calculation

A_c: A_f & A_o overlapping

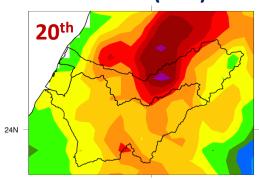

Impact assessment results

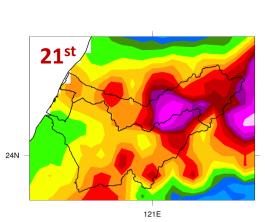
Top1 – 30 sorting by Max24hr rainfall

- Max24hr rainfall: 21st = 1.24 * 20th
- Duration: 21st = 0.88 * 20th
- Rainfall focuses on middle-southern & eastern TW

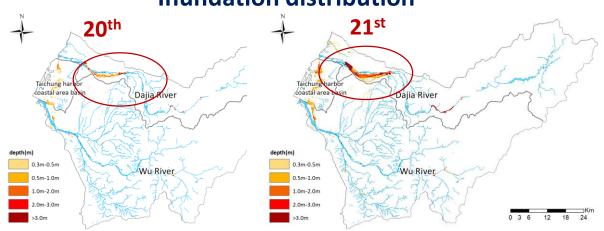
Different Inundation Depth Assessment

- Inundation depth contracts on < 1m</p>
- 21st inundation areas are obvious greater than 20th


Mean area (km²)	20 th	21 st	Times (21 st /20 th)
< 0.5m	2.51	4.58	1.82
0.5m~1m	2.38	5.11	2.15
1m~2m	0.8	2.72	3.40
2m~3m	0.14	0.66	4.71
> 3m	0.18	1.30	7.22



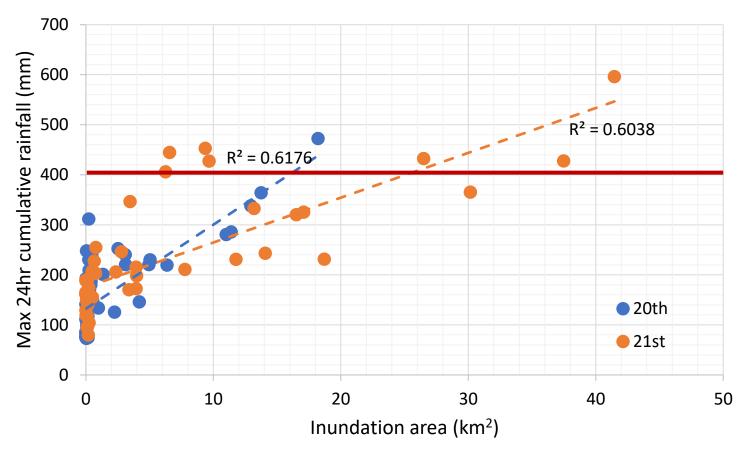
Worst case - TOP1



Max24hr cumulative rainfall (mm)

Inundation distribution

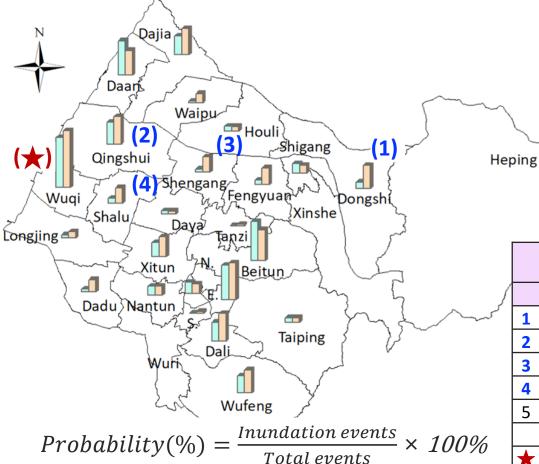
	20 th TOP1	21 st TOP1
Max 24hr	472.38 mm	596.24 mm
Total rainfall	551.40 mm	855.07 mm
Duration	37 hr	73 hr
Inundation area	18.21 km ²	41.46 km ²



200 400 600 800 1000 1500

Rainfall & Inundation relationship

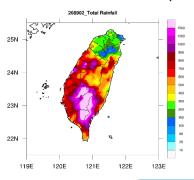
 21st inundation impact will be drastic increased than 20th as the same rainfall.



Inundation Probability (IP)

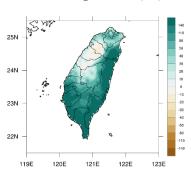
4 Town IP will increases over 4% in future.

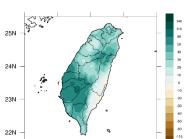
Wuqi has a highest flood risk in all periods.



	Flooding Probability				
	Town	20th	21st	21st - 20th	
1	Dongshi	2.41%	8.88%	6.47%	
2	Shengang	1.20%	5.92%	4.72%	
3	Fengyuan	1.81%	6.51%	4.70%	
4	Shalu	1.81%	5.92%	4.11%	
5	Dadu	1.20%	4.73%	3.53%	
L					
$ \bigstar $	Wuqi	19.28%	21.89%	2.61%	

Development path and Future outlook

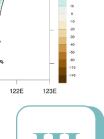




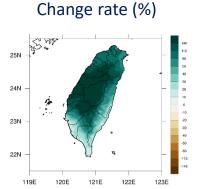
TOP1

Change rate (%)

TOP1-5

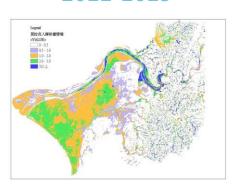

121E

Change rate (%)

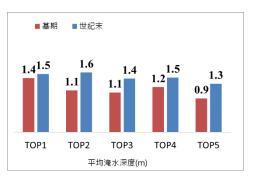

Over 100 events

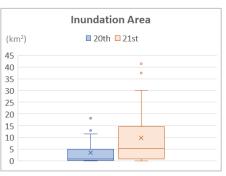
120E

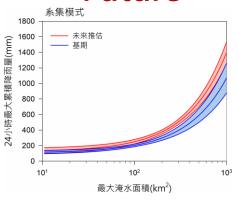
119E



Over 1000 or more




2011-2015


2015-2018

2018-Now

Future

