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Dynamic Vegetation Model
R

i rempe(atqre. winas sensible and latent
precipitation, pressure heat fluxes, albedo
I radiation, humidity CO, flux, roughness
I CO, concentration surface temperature
50 Terrestrial Biosphere
| (ORCHIDEE)
| Energy and Water Balances, Photosynthesis
(SECHIBA)
[ Natural At= 30 min
| . <
GPF, soil profiles of LA, albedo
i DlStu l'b ances temperature and water l T roughness
| Vegetation and Soil Carbon Cycle
Droughts or Storms (STOMATE)
I At= 1 day
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Vegetation Growth and Environmental Disturbances

Land Use and Cover Changes



Research Materials

* Long-term Climate Reconstruction

* An Innovative Dynamic Vegetation Model with New
Model Features

* Long-term Land Use and Land Cover (LULCC) Data

* Factorial Numerical Design for the Attribution Study



Prescribed Atmospheric Conduction
(Regional Climate Fields)

The hOlll'ly S5 km by 5 km climate fields Temprature (K) Aunnal precipitation (mm)
describing incoming

5 5

Taiwan Climate Change Projection Information
and Adaptation Knowledge Platform project
(TCCIP) and Central Weather Bureau (CWB).

1980 to 2007 (TCCIP ERJKE 1) 2008 to 2017 (CWB E=1 F )



Wind throw module developnment

Very Strong Wind

Canopy structure, stand scale

Empirical term for root resistance, canopy properties, aero-dynamic

Ovel‘turnlng Streamlmmg, aero-dynamic
Canopy structure, landscape scale
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CWS,, = _ 2 2 Update Tree Mortality
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Canopy structure, stand scale

Canopy properties, acro-dynamic

Stem breakage

Streamhnlng, aero-dynamic

Canopy structure, landscape scale
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Chen et al., 2018



REAL FORESTS

before 2001 2002 & 2003
FORESTS in the MODEL
Harvest area
(max 2500 ha)
Edge area

- Further area

Chen et al., 2018



Land Cover Reconstruction from 1904 to Present day

* Historical Maps from Academia Sinica GIS Center ¢ S ref tati
* SPOT Satellite Images from NCU-CSRSR reforesta lOIl“
2015
—_— o Forest | (B) .| (O
Inventory ( =
Historical o |
BMApS SPOT | ;J
images J
1980
1904

A New Reconstitution of Taiwan’s Land Cover Changes and Uncertainty between 1904 and 2015 is
Presented and Opened to the Public (doi:10.5281/zenod0.1307309). (Chen et al., 2019.)




Experimental Design

1600 Spin-up Transient Control Factorial Simulations Future Simulations
. EXP-TO EXP-T1 EXP-T2 EXP-T3 EXP-T4
i 5 1900
‘ 300 years i
Cold Climate | Cyclic Climate* _: 19g9 Present day
(1979) ’ (1979 1994) | Real Climate )
LULCC REAL LULCC Forcing | REAL LULCC + REAL CO, level EITT
(Fixed @ 1901) after 1900 e
 EXP-T3A: LULCC (Fixed at 1980) ' -
EXP-T3B: CO, (Fixed at 1980 |
0 (Mredar 1980 SSPs |
. EXP-T3C: No Windthrow 5 IFAN AL |
L

*Hsu and Chen 2011; Chen et al., 2022



Result-

Model Tuning &
Evaluation




3ome A
s

g e

]

Tropical cycle:Dujuan

Uob s

Mean Wind Rutio = U

sim

Ee—E

PRS-

: Mm b “:w’f* ¢

i

TIopical CycieMatmo

o Cr et tomengan s
- 5

-
= s 9 e

i~.

.40} mm..mf ww

e

:&'memx\’ 4 I |

Tropical cycle:Soudelor
o | ——
2 i :
g . :
5 ¥, w :
Iy, ~ ] : ———
3 o : :
g Ta § : :
‘s!' ‘l’w F 35T
'JM M | 3 : P
Ll 0w Vg G - : g
Tropical cycle:Merasi and Megi g - H
é = —— : :
‘& : g : g t ——J .
52 S 1 : - — Lol 4
ﬁ ‘l Vo E . : :

; i Al il o —_ e 1. : — —
| Q’r “g 3 i = n=7963  n=37173 n=18337  n=6478  n=2018 n=722 n=241 n=109
sl WY W g — T tal
" rds 4 1 2 3 4 5 6 7 8

' —— ey Beaufort Wind Force Scale
Tropical cycle-Nesst Tropical cycle:Nepartak Tropical cycle-Souli
WRE Serwie o
¢ I&'.‘(z\':n_
s
171 {= %. %.
: i i i ‘ i
} H 1 i 4 3
o8 { | ! i,
' : :

L m. S T e AT g s

| Ml

o
T 9 wewn e A

The statistics for the hourly 10m wind speeds observed by CWB
stations and simulated by WRF for eight selected extreme
events. The red and circled black lines represented the medan
(50%) of all observed wind speeds and the nearest simultaneous

WREF simulated wind speeds.
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(a)

Aboveground Wood Volume (m? ha™?)

Model-simulated AGW and Forest Inventory
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Attribute Changes in Forest Biomass to
Environmental Disturbances

(a) (b)

* Tropical Cyclones Decreased Forest Biomass
more than the Combined Effect of Land
Cover Change and CO, Fertilization, and its
Associated Climate Changes

* Models might Largely Overestimate the
Forest Biomass in Regions Prone to
Frequent Tropical Cyclones without
Considering Wind Disturbances

Fixed LULCC =309 No wind-throw



Discussion- Present-day Forest Biomass
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Vulnerabilities of the Biomass Distribution

* The factorial simulation experiment suggests that over the past 40 gears the frequent occurrence
of tropical cyclones has had a more substantial effect on the AGW than the combined effects
of land cover change and CO, fertilization, and the associated climate change. Even at the
national level, a handful of tropical cyclones could offset the impact of decades of afforestation and
forest protection programs and the effect of enhanced forest growth due to changing environmental
conditions. Losses in biomass following the Fassage of intense tropical cyclones have been well
documented (Lin et al., 2003; Lin et al.; 2011; Urnarte et al., 2019), although a bias towards
studying the most intensive tropical cyclones (class 3 and up; Lin et al., 2020) has resulted in a
limited understanding of how forests 1n storm-prone regions respond to the more frequent passage
of lower intensity tropical cyclones.

* Due to climatic warming, cyclone intensity is predicted to increase, and storm tracks are
projected to shift poleward (Mizuta et al., 2017; Tsou et al., 2016; Yin, 2005), especially in
temperate climate zones. Moreover, the translation speed of tropical clyclones as also been
slowing down, which could be associated with increased local rainfall and storm-induced damage
gKossm, 2018). Therefore, more intense storms are expected to decrease the AGW of Taiwan’s

orests. On the other hand, suppose the storm tracks move northward and thus reduce the
frequency of cyclones making landfall in Taiwan. In that case, the forest biomass is expected to
1ncrlfasie H(li fTeillwan. Still, 1t will likely decrease further northward, where future storms will
make landfall.



Model imitations

* Nitrogen (N) and phosphorous (P) cycling are not accounted for in ORCHIDEE r4262. However,
nutrient cycling and nutrient limitations may play an important role in tree growth in (sub)-tropical
forest biomes (%_10ult0n et al., 2008). The abundance of dissolved inorganic nitrogen in the river
discharge in Taiwan (Chang et al., 2020; Huang et al., 2016) suggests that n1tro%¢n 1s no longer a
factor Immiting plant growth over large areas of Taiwan. The primary source of this nitrogen 1s_
likely to be atmospheric deposition from mainland China, local industry, and household emissions
of bétween 0.8 and 20 kg N ha'! yr! (Zhao et al., 2015). Suppose atmospheric deposition
continues to increase in the future. In that case, nitrogen saturation in the soil may lead to a
decline in forest growth (Aber et al., 1999, 2003).

* The ideal simulation would account for both natural and anthropogenic disturbances and the
direct and indirect effects of a changing climate (McDowell et al., 2020). In this study, the most
critical drivers in determining the growth of Taiwan forests were assumed to be related fo the land
cover change, unmanaged forests, storm damage, and CO, fertilization, and the associated climate
change. Fire disturbance, which could, under future climatic conditions, become a substantial
disturbance in Taiwan, was not accounted for.

 Future versions of the ORCHIDEE model are expected to be capable of accounting for fire,
drought, floods, windstorms, insect outbreaks, land cover changes, forest management, and the
interaction between these disturbances. In this respect, model developments may outrun the
empirical evidence, and modelers will soon need datasets that can be used to evaluate the impact of
individual disturbances and their interactions.



Summary

* Forest biomass 1s one of the main carbon pools of terrestrial ecosystems. Its storage capacity
is, however, vulnerable to climate change and anthropogenic and natural disturbances.

* In this study, simulation experiments were used to attribute the impact of tropical cyclones,
land use and land cover change, and increasing atmospheric CO, concentrations on the
forest biomass in Taiwan.

* The simulation experiments were possible thanks to a recent century-long country-specific
land cover reconstruction, recent country-specific climate reconstructions (from TCCIP &
gWB)B and the recently developed model capability to simulate the effects of wind storms on

orest bl1omass.

* The studies show that wind disturbance strongly affects carbon sequestration rates; in the
absence of wind disturbances, the annual sequestration rate would double compared to
the present-day rate, including wind disturbances. In order words, not considering wind
disturbances might largely overestimate the forest biomass in regions prone to frequent
tropical cyclones, of which some reach typhoon strength.



SDG Actions

15 :]';ELAND The present-day global average AGW forest biomass (volume of growing stock) is 137 m? ha! and 100

m? ha! for Asia (FAO, 2020). The observed forest biomass for Taiwanese forests was 211 +4 m? ha'! in
2012 and simulated to be 217 4 m? ha'! in 2017. The AGW in Taiwan is therefore similar to Japan’s (170
m? ha-'), around 2 to 3 times the values reported for nearby countries such as China (85 m3 ha!), Korea
(79 m? ha'!) (Tomppo et al., 2010), or the nearby Chinese province of Fujian (87 m? ha!; Xu et al., 2019).

Under the assumption of keeping the present-day forest coverage but letting the young forests (stands age
below 30 years reported in the fourth national forest inventory) reach the average biomass for the other forests

observed in the same region with a similar climate background. It would increase the average AGW by about 16 . o
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