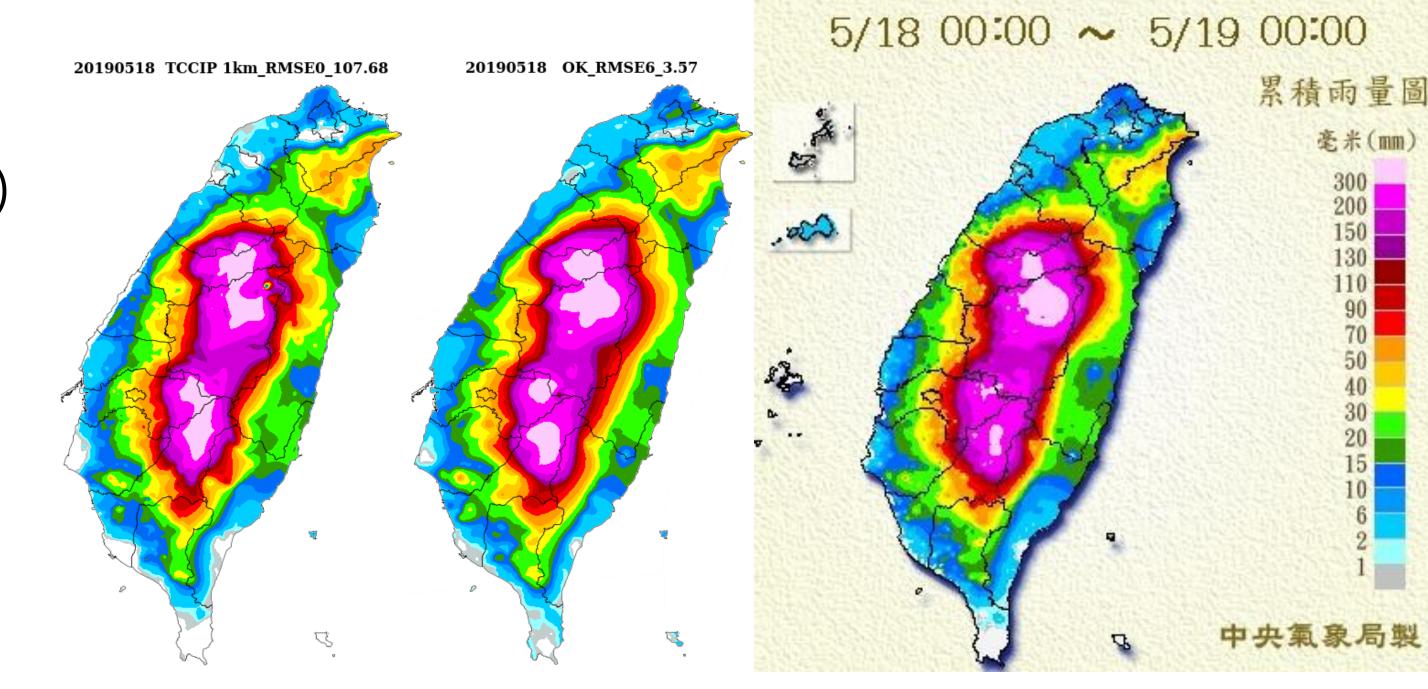
網格化資料分析暖季西南部地區午後對流個案

呂奕勳1劉清煌1楊菁華1

1中國文化大學理學院大氣科學系

● 研究動機

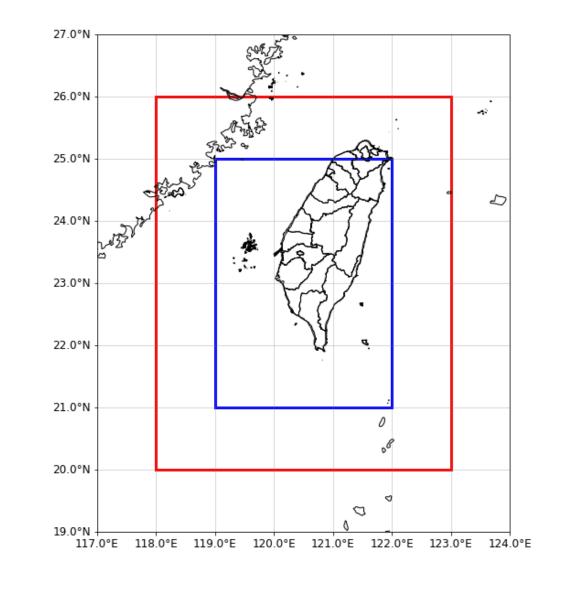
yhl19980206@gmail.com


此研究最終目標是想要計算不規則範圍內,午後對流降水在不同低層風場下,降水強度、分布變化,希望先透過「等距」、「不受測站分布不均」影響的雨量資料,計算午後對流個案降水熱區,並作為後續分析使用。

● 使用資料

- 1.2019年5至9月TCCIP_1公里網格日觀測資料
- 2. 中央氣象局測站日雨量資料(測站資料皆分析時段之9成以上可使用)
- 3. ERA5 reanalysis 00Z之1000-900hPa UV風場

● 網格資料比對


逐日比較2019年5至9月: TCCIP、當日測站資料普通克利金法(OK, Ordinary Kriging)內插至1km後,再參考洪等(2020)透過Cressman法逐次縮小影響半徑(20、15、10、7.5、5、2.5km)修正、氣象局三種資料之日累積雨量分布,部分個案如(圖一)2022年5月18日整體平均RNSE相較於TCCIP低,故選用自己產製的資料作為後續分析使用。

圖一、TCCIP (左)、OK+Cressman(中)、 氣象局累積雨量圖(右)

● 個案篩選、分析區域選定

參考朱等(2017):分別將2017-2022年5至9月颱風行經(118°~123°E, 20°~26°N)以及鋒面行經(119°~122°E, 21°~25°N)個案去除(圖二),再透過雷達回波與衛星雲圖將遠方有大範圍>30BZ回波移入臺灣西南部的個案濾除,得到午後對流個案,以其降水分布(圖三)西南部降水熱區(黑框區域)分析降水隨風場的變化。

圖二、颱風(紅)、鋒面(藍)濾除範圍示意圖

圖三、颱風(a)、鋒面(b)、雨帶移入(c)、午後對流(d)降水空間分布

● 低層風場定義

- 1. 取118.5-123.5E°,20.5-26.5N°(圖4紅框),並去除地形上空格點(紅點),計算每層平均風場,依八方位風向分類,得出每日於每層的大致風向。
- 2.每層最接近平均風向及其兩相鄰風向三者間網格數最多者,訂為當天於該層場的主要風場(圖5-1)。
- 3. 各層間環境風向之網格數最多者作為當日低層風場(圖5-2)。

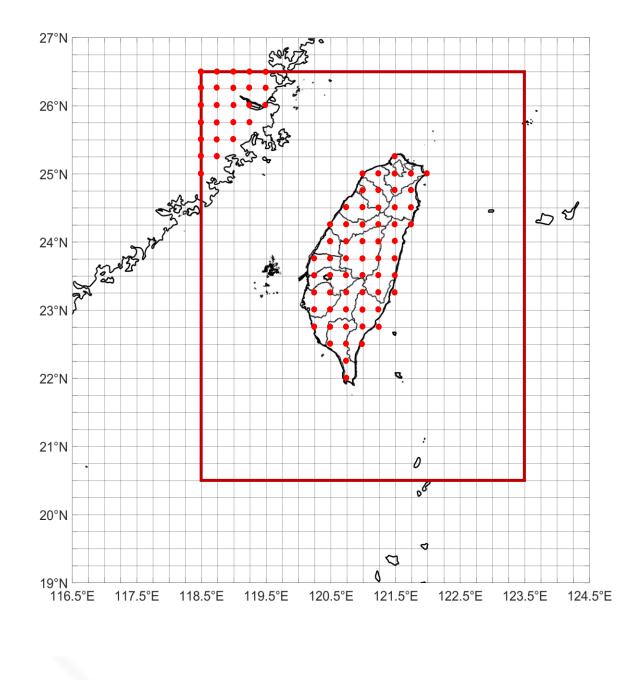


圖4、訂定低層風場的domain

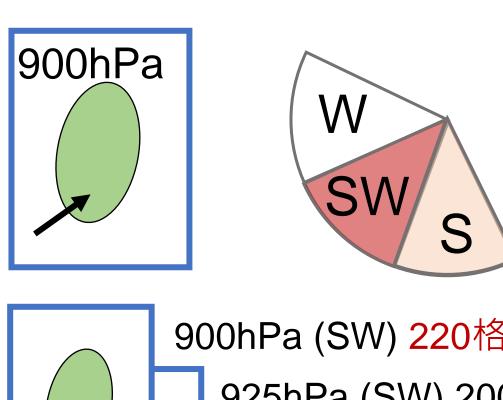


圖5-1、一個案單層風向訂定方式

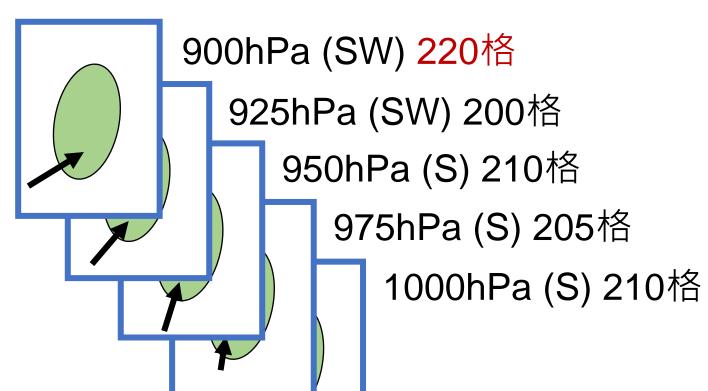


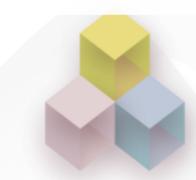
圖5-2、一個案各層風向統計結果

● 初步結果與未來工作

由2017-2022年5至9月午後對流個案可知:

- 1. 西南部午後對流個案主要以低層東北、西南風個案為主,降水集中於西南風個案 (表一)。
- 2.大於10m/s的個案,風速較弱,降水反而較多;小於10m/s個案則反之(表二)。
- 3. 期望能申請TCCIP這段時間1km網格雨量資料,對結果進行比對,以利後續分析。

表一、午後對流各低層風向日數與降雨量


	日數(占比)	網格總雨量(占比)	單位面積 平均日雨量
Ν	17 (3.4%)	420877 (2.3%)	5.5
NE	90 (18.1%)	2488610 (13.6%)	6.0
Е	72 (14.5%)	2190922 (11.9%)	6.6
SE	63 (12.7%)	2564541 (14.0%)	8.9
S	54 (10.9%)	2513180 (13.7%)	10.1
SW	160 (32.2%)	5684773 (31.0%)	7.7
W	35 (7.0%)	2408732 (13.1%)	15.0
NW	6 (1.2%)	70051 (0.4%)	3.0

表二、午後對流各低層風向風速日數 與單位面積平均日雨量

	0-5m/s	5-10m/s	10-15m/s
N	8 (9.4)	8 (4.2)	1 (1.9)
NE	31 (9,3)	49 (4.0)	10 (5.6)
E	52 (7.1)	20 (5.5)	ı
SE	40 (10.2)	23 (6.6)	I
S	27 (10.8)	26 (9.7)	1 (3.7)
SW	69 (10.1)	78 (4.6)	12 (10.3)
W	17 (14.5)	16 (13.7)	2 (29.3)
NW	5 (3.5)	1 (1.8)	-

● 參考文獻

- 1. 交通部中央氣象局,2009:「應用克利金法建立高解析度網格點氣象數據之研究」委託研究計畫成果報告。
- 2. 朱瑞鼎,陳昭銘,張家治,「臺南地區弱綜觀天氣之降雨分析」,106年天氣分析與預報研討會,A1-5,交通部中央氣象局,2017。
- 3. TCCIP網格化觀測資料資料說明文件,https://tccip.ncdr.nat.gov.tw/upload/data_document/20200219112847.pdf。
- Ⅰ. 洪景山、曹嘉宏,利用 Cressman 客觀分析法於網格化臺灣自動雨量觀測資料之探討,大氣科學,第39期第3號,109年9月,第201-214頁

