國家氣候變遷科學報告2024: 現象、衝擊與調適

坡地主題

國立臺灣大學地質科學系陳麒文助理教授

行政法人國家災害防救科技中心 National Science and Technology Center for Disaster Reduction

| 臺灣氣候變遷推估資訊與調適知識平台

指導單位

研究團隊

▶國家氣候變遷科學報告-坡地 撰寫作者

- 國立臺灣大學土木工程學系 林銘郎 教授
- 國立臺灣大學地質科學系 陳麒文 助理教授
- 國家災害防救科技中心 朱芳儀 專案佐理研究員

▶國科會TCCIP計畫坡地領域研究團隊

- 國立臺灣大學地質科學系 陳麒文 助理教授
- 國家災害防救科技中心 朱芳儀 專案佐理研究員

大綱

- ▶科研資料與研究技術-科學報告發展差異
 - 1. 應用資料演進
 - 2. 評估方法精進
 - 3. 實際應用落實
 - 4. 瓶頸
- ▶分析圖資發展與精進-TCCIP計畫成果
 - 1. 氣候變遷推估資料導入與應用
 - 2. 應用案例

科研資料與研究進展

科學報告版本推進

2011版

> 歷史觀測資料

選用 情境

資料

類型

> 歷史時期

應用 方面

> 強降雨變化趨勢

2017版

- > 歷史觀測資料
- ➤ CMIP3推估資料

- ➤ IPCC AR4(A1B情境)
- > 重現期
- 氣候變遷下崩塌面積、土砂量變化趨勢
- 鄉鎮坡地災害風險變 化趨勢

2024版

➤ CMIP5、CMIP6 推估資料

- ➤ IPCC AR5、AR6 (RCP8.5、全球暖化 程度情境GWL)
- ▶ 氣候變遷下極端事件 之坡地衝擊範圍
- ▶ 不同單元之坡地災害 風險變化趨勢

應用資料演進 - 統計、數值、經驗模式

第4.2章(p.314-315)

2017科學報告

2024科學報告

CMIP3推估資料

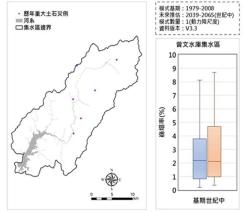
▶ 統計降尺度

- ▶ 動力降尺度
- ➤ A1B情境

CMIP5推估資料

- 動力降尺度(MRI-WRF)
- RCP8.5情境
- 基期、21世紀末

- ➤ 動力降尺度(HiRAM-WRF)
- ➤ RCP8.5情境
- 基期、21世紀中、21世紀末


氣候變遷基期和A1B情境流域崩塌風險與土砂生產量

	氣候變遷基期		氣候變遷 AlB			增加倍數變化量			
子集水區	崩塌坡	崩塌	土壤沖蝕	崩塌坡	崩塌	土壤沖	崩塌坡	崩塌	土壤沖蝕
	單元面積	產砂量	量	單元面積	產砂量	蝕量	單元	產砂量	量
	[km ²]	[萬 m³]	[萬 m³]	[km ²]	[萬 m³]	[萬 m³]	[%]	[%]	[%]
淡水河	46	0.00	6.52	47	0.00	11.94	0	0	+83
基隆河	301	110.23	27.08	301	160.68	51.11	0	+46	+89
新店溪	301	11.24	22.25	466	28.46	44.04	+27	+153	+98
翡翠水庫	242	6.23	23.48	296	12.03	50.80	+18	+93	+116
大漢溪	106	20.68	13.36	180	60.79	21.76	+19	+194	+63
石門水庫	674	38.51	12.62	742	521.53	20.49	+9	+1254	+62
全流域	1,669	186.89	105.31	2,032	783.49	200.14	+14	+319	+90

A1B情境下淡水河流域崩塌面積及產砂量提升 水利署水規所(2013)

21世紀末崩塌變化趨勢 李欣輯等人(2018)

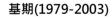
21世紀中崩塌衝擊變化趨勢

國家科學及技術委員會,2022

應用資料演進 - 指標法

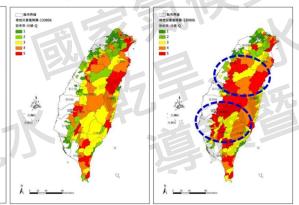
第4.2章(p.316-317)

2017科學報告


2024科學報告

CMIP3推估資料

CMIP6推估資料


- ▶ 動力降尺度
- ▶ 空間尺度:鄉鎮

- 統計降尺度
- ▶ 全球暖化程度、SSP5-8.5、RCP3-7.0、SSP2-4.5、SSP1-2.6
- ▶ 空間尺度:鄉鎮、最小統計區、網格

近未來(2015-2039)

世紀末(2075-2099)

1.5°C (現今) (近未來期間) (世紀中期間) (世紀末期間) (

氣候變遷衝擊下坡地災害風險圖

不同全球暖化程度下最小人口統計區之坡地災害風險

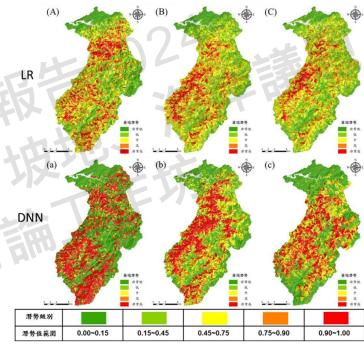
陳韻如等人(2014)

陳韻如等人(2024)

評估方法精進

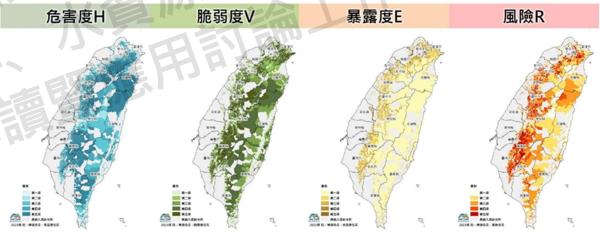
- ➤ 人工智慧 (Artificial Intelligence, AI)
 - 機器學習(Machine Learning, ML)

表 2 機器學習法預測小林村崩塌斜坡單元之正確百分比表


方法	貝葉斯	決策樹	隨機森林	自適應增強	極限梯度
	(Naive Bayes)	(Decision Tree)	(Random Forest)	(AdaBoost)	(XGBoost)
正確率(%)	82.95	62.02	79.84	77.52	75.97

▶ 應用五種機器學習演算法預測崩塌, 預測正確率可達到六至八成

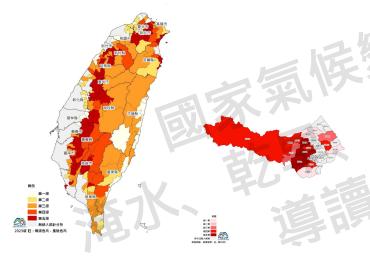
林彥廷等人 (2021)


- 探討羅吉斯回歸(LR)及深度神經網路模型(DNN) 對於樣本數與母體數比例的適用性
- ➤ 樣本數少於母體個數約4%時,不適合利用 DNN建立崩塌潛勢模型,以免過度擬合

吳俊毅等人 (2022)

評估方法更新

	2017科學報告	2024科學報告
危害度	極端降雨發生機率 (24小時延時降雨量超過350毫米)	極端降雨發生機率 (日雨量超過350毫米年最大值)
脆弱度	地質災害潛勢、六級坡以上範圍與歷 史崩塌	地質災害潛勢與裸露地面積比
暴露度	山坡地範圍鄉鎮現況人口密度	山坡地範圍鄉鎮 現況與推估2036年人口密度



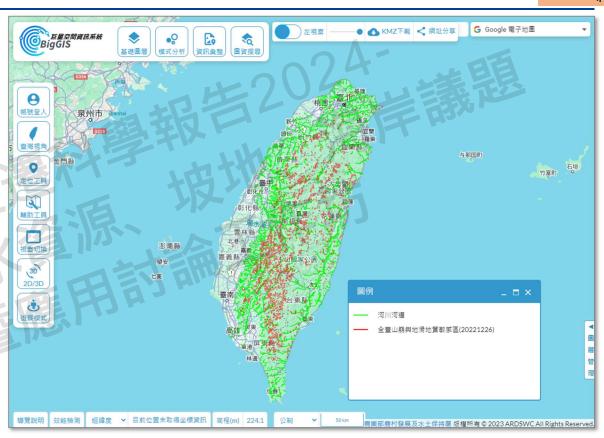
資料來源:氣候變遷災害風險調適平台 https://dra.ncdr.nat.gov.tw/Frontend/Disaster/RiskIndex?Category=History

實際應用落實 - 氣候變遷災害風險圖台

第4.2章(p.317)

- ▶ 全臺版及縣市版風險圖
- ➤ 不同空間尺度(鄉鎮市區、最 小人口統計區、5km網格)
- ▶ 提供圖台查詢及展示

GWL2°C風險圖



資料來源:氣候變遷災害風險調適平台<u>https://dra.ncdr.nat.gov.tw/Frontend/Disaster/RiskIndex?Category=History</u> 圖台<u>https://dra.ncdr.nat.gov.tw/Frontend/Tools/ShowMapBoxWMS</u>

實際應用落實 - 巨量空間資訊系統BigGIS

f4.2章(p.312)

- ▶ 基礎資料整合
 - 坡度、坡向
 - 地形特徵
 - 道路
 - . . .
- > 全面性的坡地災害潛勢資訊
 - 災害事件衛星影像判釋成果
 - 地質災害潛勢
 - 土石流潛勢溪流
 - . . .
- ▶ 整合眾多單位資料,提供使用 者一個方便瞭解坡地潛勢、水 土保持、地貌等資訊的平台

資料來源:巨量空間資訊系統 BigGIS https://gis.ardswc.gov.tw/

圖台https://gis.ardswc.gov.tw/map/

瓶頸

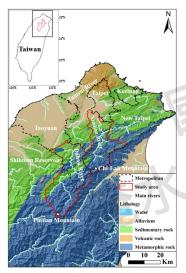
技術科研面

- ▶ 因應山區複雜地形及短延時致災特性,提升氣候變遷推估資料之時間及空間解析度,降低衝擊評估不確定性
- ▶ 增加區域細部空間衝擊評估,掌握坡地土砂衝擊影響區位
- ▶ 考量坡地致災條件多元及影響鏈複雜,應加強複合與跨域風險科學循證研究
- ▶ 坡地水文穩定性雖已有相當多研究,但要準確估計由山坡地水文引起的不穩定時間及後果仍困難,需持續探索相關作用機制
- ▶ 關注氣溫變化以及旱澇交替降雨變化對坡地災害衝擊的影響

調適應用面

- ▶ 因坡地災害與氣候變遷關係相對複雜,需強化與利害關係人的風險溝通及使其瞭解調適必要性
- ▶ 導入在地知識,推動具包容性及因地制宜的調適行動

分析圖資發展與精進

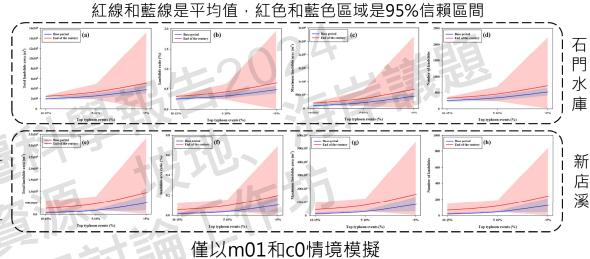


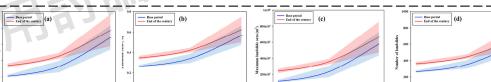
應用之推估資料

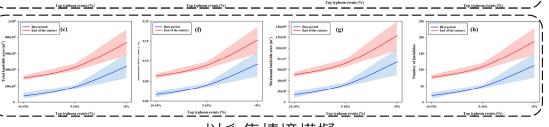
動力降尺度 CMIP6 CMIP6 CMIP5 CMIP3 CMIP5 TaiESM1-WRF /HiRAM-WRF **HIRAM-WRF MRI-WRF MRI-WRF** ➤ 小時/5km ➤ 小時/5km ➤ 小時/5km > RCP8.5 > A1B > RCP8.5 · GWL ➤ 小時/4km **〉** 小時/3.5km ▶ 基期、21世紀末 ▶ 基期、21世紀中、 ▶ 基期、近未來、 ✓ GWL · SSP ✓ > 颱風事件、連續 21世紀末 21世紀末 > 颱風事件 時雨量 > 颱風事件、連續 時雨量

資料演進優勢

- ➤ CMIP5動力降尺度資料MRI-WRF
- ➤ 僅使用單一情景,結果不確定性高, 難瞭解基期和21世紀末崩塌情況的差 異;使用系集情境能大幅度降低結果 不確定性並辨識最嚴重的情形

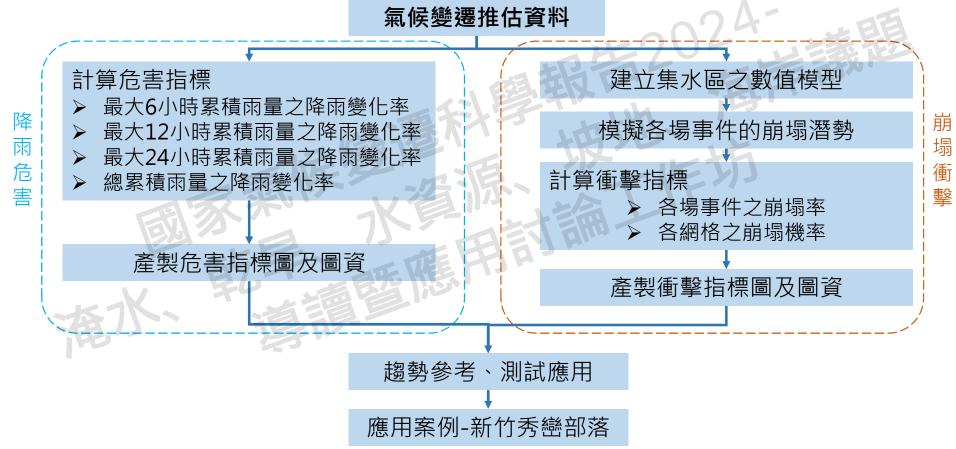

	10000000
Scenario	Total Number of Typhoons
m00	82
m01	84
Ensemble	166
cO	45
c1	23
c2	55
c3	46
Ensemble	169


研究區


颱風事件數

Chen et al.(2020)

臺灣氣候變遷推估資訊與調適知識平台 Tolwan Climate Change Projection Information and Adoptation Knowledge Platform



以系集情境模擬

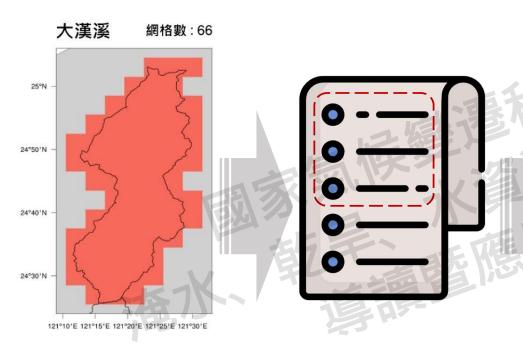

15

新店

氣候變遷推估資料導入與應用

氣候變遷推估資料導入與應用

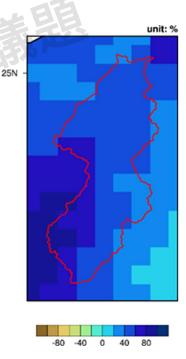
氣候變遷推估資料 - AR5動力降尺度


- 颱風帶來的極端降雨是誘發崩塌的重要因素之一
- ➤ 選用具颱風事件之動力降尺度資料(HiRAM-WRF),並以各集水區累積雨量排序前30%的颱風事件視為極端事件,瞭解氣候變遷可能帶來的崩塌衝擊

模式	1、重科与	HiRAM-WRF	
時間解析度	小時		
空間解析度	水道源	5公里(正規網格)	
全球暖化程度(GWL)	約1°C(基期)	2°C	4°C
年份	1995至2014年	2032至2055年	2072至2095年
全部颱風事件數目	95	343	178
累積雨量前30%事件數目	29	103	53

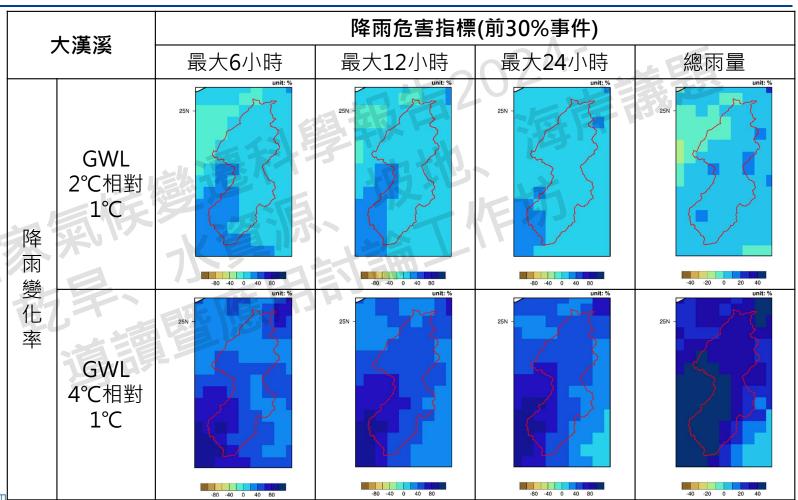
降雨危害評估

▶ 危害指標:最大6小時、最大12小時、最大24小時、總累積雨量的降雨變化率

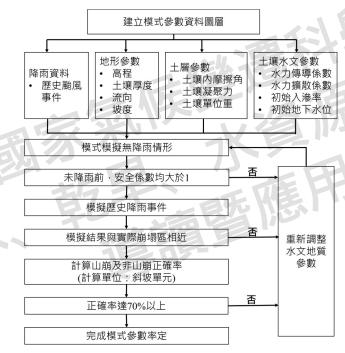


▶ 依範圍選定計算網格排序並選取前30%的事件

GWL1°C GWL4°C 總累積雨量 率均值 率均值


- ▶ 計算各網格各時期各指標的平均值
- ▶ 計算各網格各指標 的降兩變化率

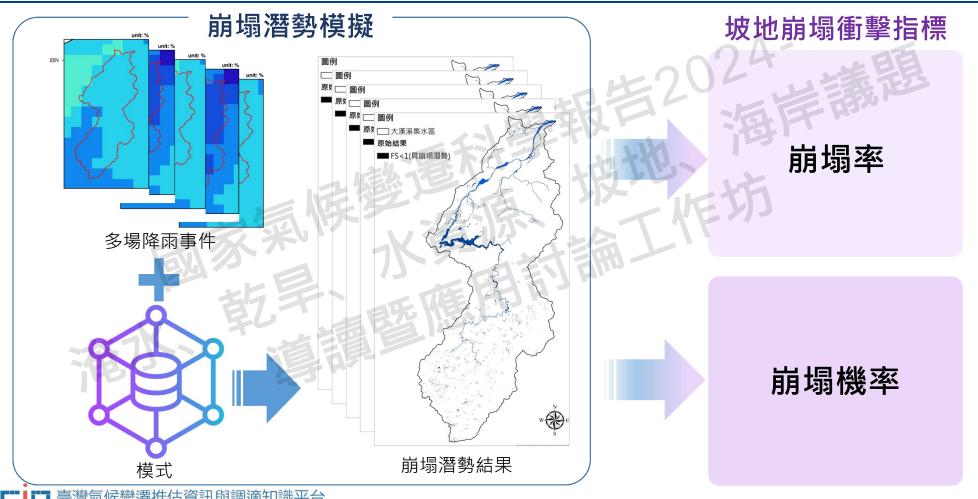
▶ 降雨變化率圖


全球暖化程度2℃及4℃集水區降雨變化趨勢

- ▶ GWL2℃相對 1℃,大漢溪整 體降雨大致呈提 升趨勢(幅度約0 至40%)
- ▶ GWL4℃相對 1℃,大漢溪整 體降雨呈提升趨 勢(幅度約20至 80%)

崩塌數值模式建立及模擬

- ➤ TRIGRS模式主要模擬暫態降雨對於坡地穩定性造成的影響, 並透過安全係數(factor of Safety, FS)呈現坡面的崩塌潛勢
- ➤ 當FS<1時,代表坡面具崩塌潛勢



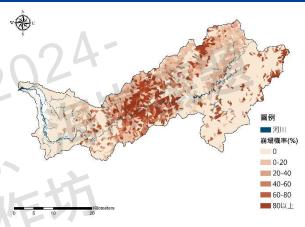
模式建置流程

崩塌衝擊模擬與指標計算

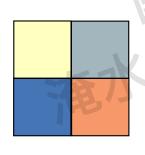
衝擊指標 - 崩塌率

▶ 集水區整體崩塌衝擊變化趨勢

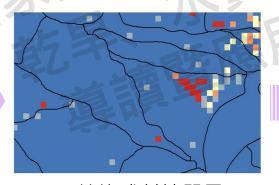
大甲溪集水區 模式評估具崩塌潛勢網格數 單一颱風事件的崩塌率= × 100% 集水區總網格數 崩塌率(%) 29場事件 1°C 2°C 4°C 之崩塌率 崩塌率趨勢變化 29場事件有29個崩塌率值 繪製盒鬚圖 (示意圖)

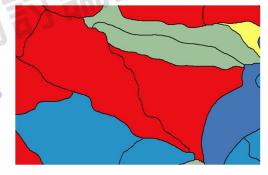


衝擊指標 - 崩塌機率


▶ 集水區空間上崩塌衝擊的變化

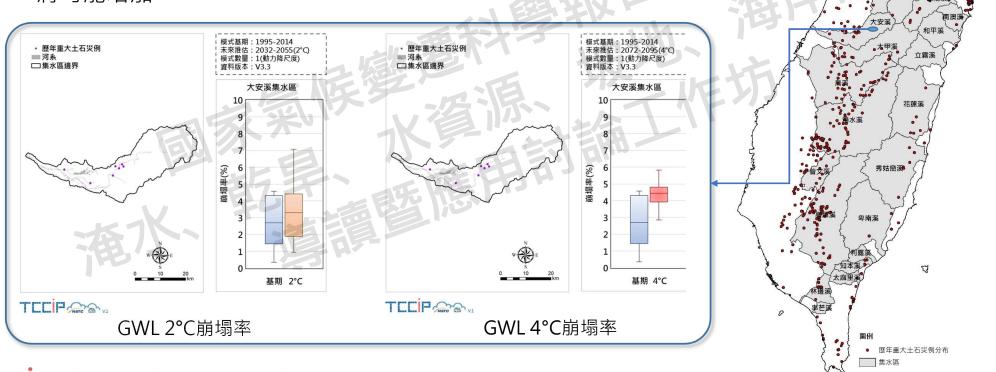
單一網格的崩塌機率 = 模擬事件具崩塌潛勢的次數 總模擬事件次數 × 100%


單一斜坡單元的崩塌機率 = 單元中最大的崩塌機率值

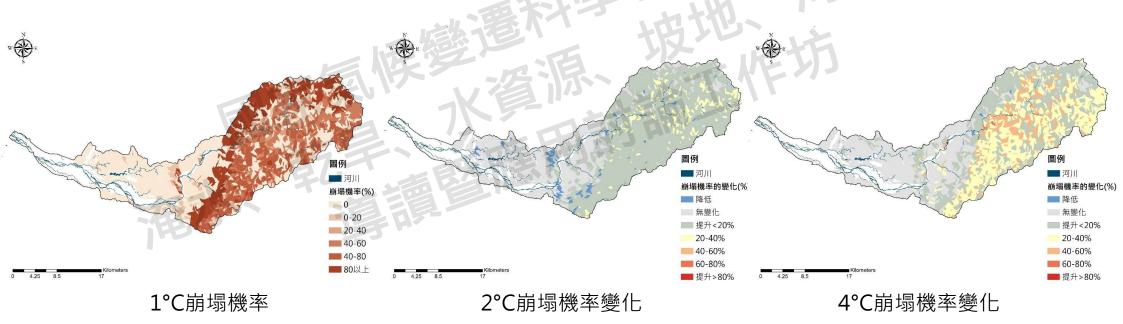

崩塌機率分布圖

▶ 計算網格的 崩塌機率

▶ 轉換成斜坡單元 (取最大值)


▶ 計算各斜坡單元各時期 的崩塌機率及變化

▶ 繪製 崩塌機率圖


全球暖化程度2°C及4°C崩塌率變化趨勢

▶ 相較於GWL1°C,大安溪最大24小時前30%事件的崩塌率中位數在GWL 2°及4°C下皆呈提升趨勢,未來的坡地衝擊將可能增加

全球暖化程度2°C及4°C崩塌機率變化趨勢

- ▶ 相較GWL 1°C,GWL2°C下,崩塌機率提升的區域多位於集水區中上游,提升幅度介於 0至40%
- ▶ 相較GWL 1°C,GWL4°C下,崩塌機率提升的區域也多位於集水區中上游,提升幅度介於0至80%

應用案例 - 新竹秀巒部落

資料到位

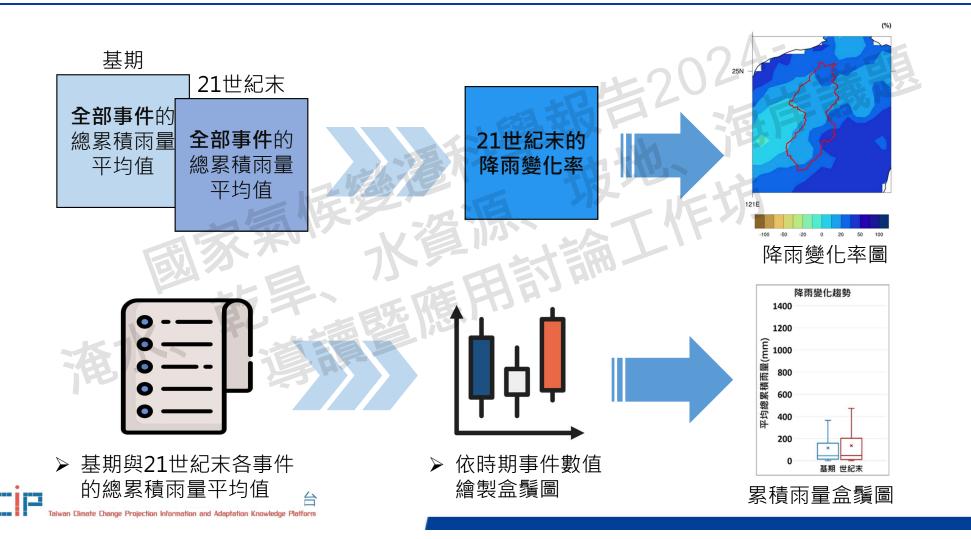
模式可行

政策連結

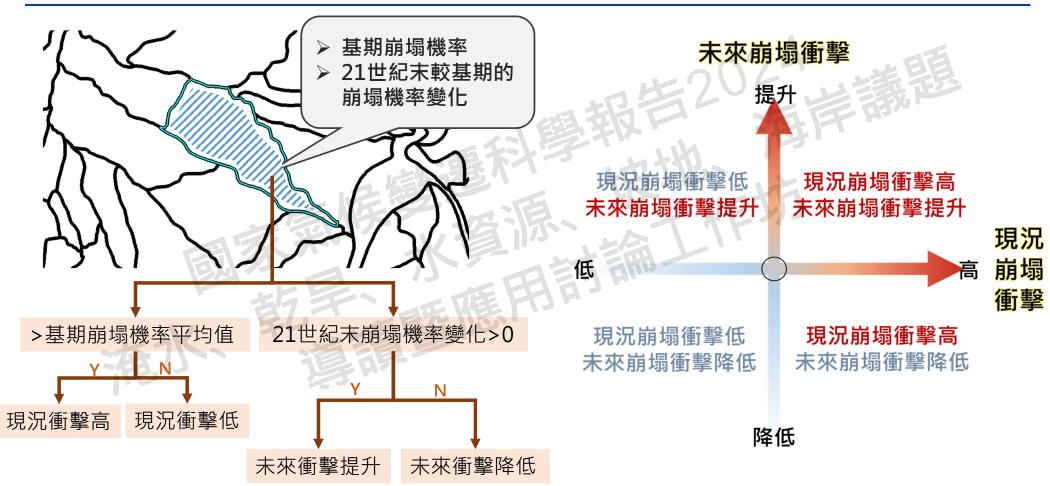
利害關係人

個案代表性

部會意見

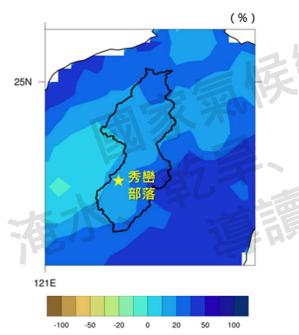

新竹縣秀巒部落

氣候變遷推估資料

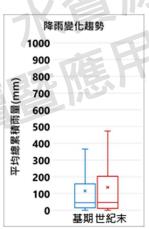

➤ 使用MRI-WRF基期及21世紀末全部颱風事件,評估氣候變遷下的降雨變化趨勢及坡地崩塌 衝擊

模式	MRI-WRF		
時間解析度	// · · · · · · · · · · · · · · · · · ·		
空間解析度	5公里(正規網格)		
情境	7 RC	P8.5	
時期	基期	21世紀末	
年份	1979至2003年	2075至2099年	
全部颱風事件數目	166	169	

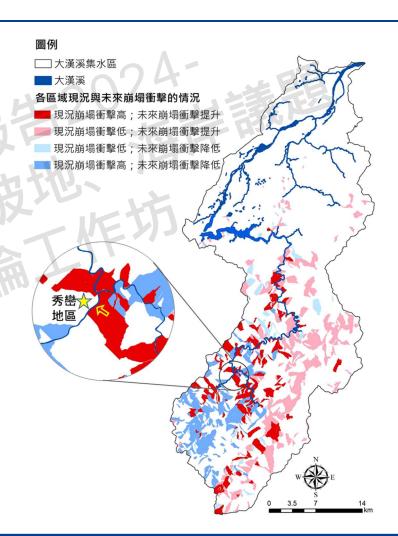
降雨危害評估



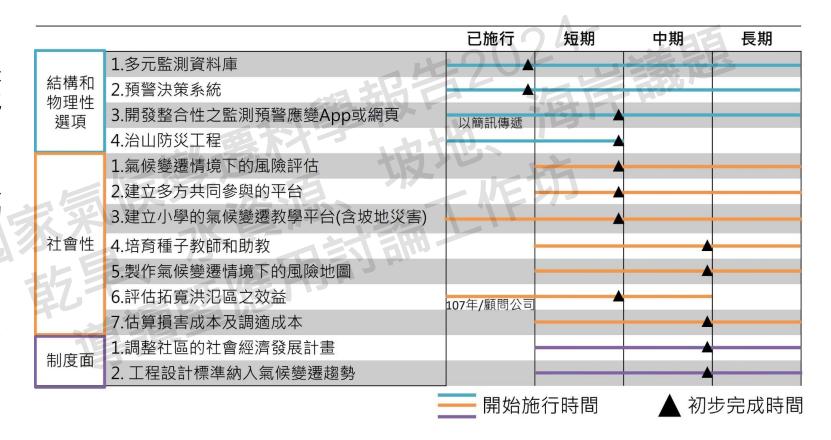
現況及未來的崩塌衝擊


危害變化與衝擊情形

- ▶ 21世紀末秀巒部落降雨趨勢提升,增加幅度約 10~20%
- 秀戀部落受右側崩塌影響,未來崩塌衝擊具提升 趨勢


模式基期: 1979-2003 未來推估: 2075-2099 (世紀末) 模式數量: 1(動力降尺度)

資料版本: V3.1


大漢溪總累積雨量變化率

衝擊資訊應用

- ▶ 衝擊圖可提供未 來氣候變遷坡地 衝擊變化資訊
- ▶ 促進利害關係人 討論調適選項的 可行性

