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A B S T R A C T   

Flood risk assessment is an important task for disaster management activities in flood-prone areas. Therefore, it is 
crucial to develop accurate flood risk assessment maps. In this study, we proposed a flood risk assessment 
framework which combines flood susceptibility assessment and flood consequences (human health and financial 
impact) for developing a final flood risk assessment map using Multi-Criteria Decision Analysis (MCDA) method. 
Two hybrid Artificial Intelligence (AI) models, namely ABMDT (AdaBoost-DT) and BDT (Bagging-DT) were 
developed with Decision Table (DT) as a base classifier for creating a flood susceptibility map. We used 847 flood 
locations of major flooding events in the years 2007, 2009 and 2013 in Quang Nam province of Vietnam; and 14 
flood influencing factors of topography, geology, hydrology and environment to construct and validate the 
hybrid AI models. Various statistical measures were used to validate the models, including the Area Under 
Receiver Operating Characteristic (ROC) Curve called AUC. Results show that all the proposed models performed 
well, but the performance of the BDT model (AUC = 0.96) is the best in comparison to other models ABMDT 
(AUC = 0.953) and single DT (AUC = 0.929). Therefore, the flood susceptibility map produced by the BDT model 
was used to combine with a flood consequences map to develop a reliable flood risk assessment map for the study 
area. The final flood risk map can provide a useful source for better flood hazard management of the study area, 
and the proposed framework and models can be applied to other flood-prone areas.   

1. Introduction 

Flood is one of the most devastating natural hazards affecting life, 
damaging properties, disrupting communication and causing death all 
over the world (Khosravi, 2018; Khosravi et al., 2016; Luu et al., 2018; 
Nardi et al., 2006; Rahmati et al., 2016). Floods affect the socio- 
economic condition of the country (Degiorgis, 2013, 2012b; Tran 
et al., 2009; Van Aalst and Burton, 2002). Global climate change has 
recently increased the frequency and duration of precipitation and thus 
the incidence of flooding in the river basins and low-lying areas (Bui 
et al., 2019a; Nguyen et al., 2018). Climate change effects have also 

resulted in increasing flood incidents due to the increase in rainfall in-
tensity and frequency (Bouwer et al., 2010). In addition, anthropogenic 
activities such as deforestation and land-use pattern change have 
contributed to severe flooding incidents (Bubeck et al., 2012). Flood risk 
has been increasing in coastal and low-lying areas due to migration of 
population and climate change effects (Nicholls et al., 1999). 

Nowadays, flood risk assessment is gaining importance for proper 
flood management of an area (Manfreda and Samela, 2019; Merz et al., 
2010). Flood risk can be determined as a product of the probability and 
potential consequences of a flood event (Sayers et al., 2002). Flood risk 
can also be considered the probability of losses and includes three 
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components of hazard, exposure and vulnerability (Ronco, 2014; Win-
semius et al., 2013). The probability of a flood occurring at one location 
depends on geo-morphological factors and geo-environmental factors 
(Khosravi et al., 2016). The potential consequences concern humans and 
exposed elements (Jato-Espino et al., 2019). Currently, flood risk studies 
have also been developed at the interface between nature and society 
(Brown and Damery, 2002). 

Many methods can be used to incorporate different indicators into an 
integrated tool for flood risk assessment and management. In this re-
gard, Multi-Criteria Decision Analysis (MCDA) methods have been 
widely used for combining, integrating and evaluating flood risk-related 
factors. Ozturk and Batuk (2011) applied Analytic Hierarchy Process 
(AHP), which is one of the popular MCDA methods for identifying the 
flood vulnerability of South Marmara Basin, Turkey and then integrated 
the risk assessment into a Geographic Information System (GIS) frame-
work. Kappes et al. (2012) presented an indicator-based framework for 
assessing vulnerability for natural hazards using MCDA approach. 
Papathoma-Köhle (2016) used this approach to determine the debris- 
flow hazard for South Tyrol, in which MCDA approach was applied to 
assign the weights of vulnerability criteria. Toosi et al. (2019) used the 
SWAT model to generate a runoff coefficient map and then combined 
flood hazard indexes using AHP method to create a flood hazard 
assessment map for Mashhad Plain Basin, Iran. However, when there are 
a large amount of data, and a large number of criteria need to be are 
analyzed for flood studies, it is difficult to estimate which criteria are 
relevant or influential in decision-making processes using MCDM 
methods. This is one of the limiations of MCDA approach where complex 
decisions are needed for the flood management (Ishizaka and Labib, 
2009). Therefore, the Artificial Intelligence (AI) or Machine Learning 
(ML) methods can be integrated with MCDA for the automatic estima-
tion of weights of each criterion to avoid human bias. 

In recent years, many ML methods have been used to predict natural 
hazards in general and flood hazards in particular. These methods 
include Artificial Neural Networks (ANN) (Falah, 2019; Lekkas et al., 
2004; Rang et al., 2006), Support Vector Machines (SVM) (Bafitlhile and 
Li, 2019; Choubin, 2019; Shrifi Garmdareh et al., 2019; Xiong et al., 
2019), Random Forest (RF) (Naghibi et al., 2019; Victoriano et al., 
2019), Logistic Regression (LR) (Nandi et al., 2016; Pradhan, 2009). The 
performance of hybrid ML models is better to compare with individual 
models in many cases (Jaafari et al., 2018; Tien Bui, 2016). The devel-
opment of new hybrid ML models is intended to further improve the 
predictive performance of the models (Bui et al., 2019c; Bui and Pham, 
2018; Tien Bui, 2018). 

In this study, the main objective was to develop a novel approach 
which is a combination of hybrid ML models and MCDA technique for 
creating a flood risk assessment map for Quang Nam province which is 
one of the flood-prone areas of Vietnam. With this aim, we developed 
two hybrid ML models, namely AdaBoost-DT and Bagging-DT with De-
cision Table (DT) as a base classifier for flood susceptibility assessment 
and mapping. One of the popular MCDA methods named AHP was 
employed to create a flood consequences map, which was then used to 
combine with the flood susceptibility map to make the final flood risk 
assessment map. The main difference of this study with previous studies 
is that this is the first time the AI or ML models integrated with MCDA for 
developing the flood risk framework and assessment. In addition, this 
integrated approach can provide a useful tool for flood risk assessment 
mapping, which can be applied to decision-making processes in flood 
risk management. The model performance was evaluated with the 
standard statistical indices measures, including Area Under the Receiver 
Operating Characteristic (ROC) Curve called AUC. Weka and ArcGIS 
programs were used for data analysis, and model development and 
visualization. 

2. Study area 

Quang Nam province (14057′10′′ to 16003′50′′ Northern latitude; 

107012′40′′ to 108044′20′′ Eastern longitude) is located in the central 
coastal region of Vietnam covering about 1,057,474 ha area (Fig. 1). 
This is a key economic region of Central Vietnam, bordered in the North 
by Danang City, and in the South by Dung Quat Economic Zone. The 
topography of the province is complex varying from high mountains in 
the west; midland in the middle; delta and coastal areas in the east. Two 
river basins of Vu Gia and Thu Bon flow through the province and form 
valleys and flood plains. 

The climate in the region is a moderate tropical type with a dry 
season and a rainy season. Total annual rainfall ranges from 2000 mm to 
4000 mm (Pham et al., 2019c). Rainfall during September to December 
period accounts for 70–75% annual rainfall. Rainfall in mountainous 
areas is much higher than in the plains (Fig. 3(b)). The rainy season 
coincides with the typhoon season, so storms and tropical depressions 
often cause landslides and flash floods in mountainous districts of Nam 
Tra My, Bac Tra My, Tay Giang, Dong Giang and Nam Giang and 
flooding in plain districts of Dai Loc, Dien Ban, Duy Xuyen and Hoi An. 
Most of the area of the province is covered by forest (Fig. 3(m)). How-
ever, the forest area has been reduced in recent years due to agricultural 
expansion, dam construction and commercial development (Meyfroidt 
et al., 2013). Anthropogenic activities and climate change effect have 
increased the risk of flooding in this province (Luu and von Meding, 
2018). 

3. Material and methods 

3.1. Conceptual framework 

Flood risk can be defined as the combination of the probability of 
occurrence of a flood event and its associated negative consequences 
which may cover different types of impacts (Schanze, 2006). The like-
lihood or susceptibility of a flood can be integrated with consequences in 
risk estimation (Woodruff, 2005). The flood risk can be managed by 
reducing the consequences it may cause (de Moel, 2015). Therefore, in 
this study, we assessed flood risk by combining the flood susceptibility 
and its negative consequences, as indicated in the following equation: 
Floodrisk = Susceptibility*Consequences (1) 

The potential impacts of flooding are often considered along with 
flood susceptibility in assessing flood risk (Merz, 2014). The conse-
quence indexes considered in this study include human health and 
financial implications. The indicators are selected based on the critical 
analysis of past and present flood-related data. The description of flood 
consequences is depicted in Fig. 2. 

3.2. Geospatial database 

3.2.1. Flood influencing factors 
Physical, anthropogenic and meteorological factors affect the 

occurrence of floods in any area. In this study, 14 flood influencing 
factors were selected based on the analysis of the topography, geo- 
environment conditions, meteorology and anthropogenic activities 
considering the nature of flood occurrences of the study area; and other 
published works (Costache, 2019; Hosseini, 2019; Wang, 2019). 
Topography and hydrology factors (Slope, Curvature, Curvature plan, 
Curvature profile, Flow accumulation, Elevation, Topographic Wetness 
Index (TWI), Sediment Transport Index (STI), Stream Power Index (SPI), 
River density and Distance from rivers) were extracted from Aster Dig-
ital Elevation Model (https://earthexplorer.usgs.gov). Lithology map 
was obtained from the Geology Institute, Vietnam. Land cover map was 
developed from Google Earth images and data of the Department of 
Natural Resources and Environment of Quang Nam province. Rainfall 
map was developed from the data of Meteorology Institute, Vietnam. 
Thematic maps of the flood influencing factors are presented in Fig. 4. In 
addition, we carried out the frequency analysis to evaluate the proba-
bility of past and present flood occurrences on each class of the flood 
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conditioning factors. In frequency analysis, the frequency ratio was 
calculated by dividing the percentage of past and present flood pixels by 
the percentage of the class pixels on each class of each factor map 
(Rahmati et al., 2016). In each factor map, the classes with higher fre-
quency ratio values have a higher probability of flood occurrences than 
those with lower frequency ratio values (Siahkamari et al., 2018). The 

results of the frequency analysis of these factors are presented in Fig. 5. 

3.2.2. Flood consequences factors 
Floods have many positive and negative consequences for the com-

munities and natural environment (Albano et al., 2014). Positive con-
sequences include replenishing nutrients in flood plain areas, filling of 
the reservoirs, recharging of the groundwater and removal of contami-
nants/pollutants. The negative consequences of flooding include 
disruption of life, fatalities and health problems (Hajat, 2005), disrup-
tion of communication, destruction of crops and adverse financial im-
pacts on societies (Thieken et al., 2014). Flood consequence indicators in 
the flood zone area vary from place to place depending on local condi-
tions. In this study, we analyzed adverse flood consequences taking into 
account human health (Fig. 6) and financial aspects (Fig. 7) to assess 
flood risk. 

3.2.3. Flood consequences on human health 
The flood consequences on human health are based on the popula-

tion density, available infrastructures and the medical capacity of the 
area (Scheuer et al., 2011). Population density is the most important 
indicator of flood consequences analysis since it directly involves 
humans (Grothmann and Reusswig, 2006). Thus, flood consequences 
would be greater for a large number of people at risk. The poverty rate 
and flood risk are interrelated in Vietnam (Tran et al., 2009). A higher 
poverty rate receives a higher weight for flood consequences. The 
mountainous areas often have a high poverty rate (>40%). In the pre-
sent study, the socio-economic indicators including population density, 
poverty rate, and number of medical staff available in the study area 
were synthesized from the 2015 statistical yearbooks of 18 districts in 
Quang Nam province. The road density (indicator) is derived from the 
intersecting transportation network and the commune boundary. The 
well-connected areas provide additional response support to community 
(Gain and Hoque, 2013; Masuya et al., 2015). The number of medical 
staff criterion affects the response activities during flood events (Scheuer 
et al., 2011). 

3.2.4. Flood consequences on financial impact 
The financial impact can be estimated based on the concentration of 

economic activities such as the density of industrial facilities and ser-
vices in the research area (Jato-Espino et al., 2019). The industrial fa-
cility density, and service and commercial facility density data were 
synthesized from the 2015 statistical yearbooks of 18 districts in Quang 
Nam province. In addition, the land-use categories indicator was also 

Fig. 1. Location of the study area, Quang Nam province.  

Fig. 2. Conceptual model of the flood consequences indicators.  

Flood mark 

Fig. 3. An example of a flood mark for the 2013 flood event constructed by 
Quang Nam Provincial Committee of Natural Disaster Prevention and Control. 
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Fig. 4. Maps of flood influencing factors: (a) elevation, (b) rainfall, (c) flow accumulation, (d) SPI, (e) STI, (f) TWI, (g) slope, (h) river density, (i) distance from 
rivers, (j) plan curvature, (k) profile curvature, (l) curvature, (m) land cover, and (n) lithology. 
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considered in flood consequences assessment (Jongman et al., 2012). In 
the study area, the potential impact of flooding is highest for homestead 
and built-up areas as it is directly related to people. The agricultural land 
indicator has the second-highest impact because it affects the residents’ 

livelihood. 

3.3. Methodology flowchart for flood risk assessment 

The methodology of the present study involves three main steps: (i) 
flood susceptibility assessment, (ii) flood consequences assessment, and 
(iii) flood risk assessment. The methodology flowchart is shown in 
Fig. 8, and the details of the three steps are presented in the following 
subsections: 

3.3.1. Flood susceptibility assessment 
First, preprocessing of input data to select relevant features for the 

modelling was done using Relief-F feature selection method, which is a 
simple and effective approach of feature weight estimation. A spatial 
geodatabase of flood susceptibility factors and flood locations was used 
to generate the training (70% flood locations) and testing (30% flood 
locations) datasets. Frequency ratio analysis was done to create the 
weights of the classes of the flood conditioning factors used in the 
modelling. Second, training dataset was used to construct the suscepti-
bility maps using hybrid AI techniques, namely ensemble ABMDT and 
BDT; and single DT. In the ABMDT method, AdaBoost ensemble was first 
used to generate the optimal training dataset, which was then used for 
training the base classifier DT. In BDT method, Bagging ensemble was 
first used to generate the optimal training dataset, which was then used 

Fig. 4. (continued). 
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for training the base classifier DT. Third, the validation of these models 
was done on both the training and testing datasets using various stan-
dard quantitative indices, including AUC. Fourth, the results of these 
indices were evaluated for selecting the best method. Finally, flood 
susceptibility maps were constructed using these models, and the best 
flood susceptibility assessment map was then used to generate a final 
flood risk assessment map. 

3.3.2. Flood inventory map 
Flood inventory represents the spatial relationships between the 

history of flood and factors of physical and human geography such as 
geomorphology, climate, hydrology and human activities (Bui et al., 
2019b). It plays an important role in modelling and generating flood 
susceptibility and risk maps. The study area of Quang Nam province is 
affected by several flood events each year due to its geographic location. 
The drainage basins of the area are steep slopes and short rivers, so the 
runoff is substantial in the mountainous regions. This causes rapidly 
flooding in low-lying areas. 

In this study, the flood inventory map consists of 847 historical 
flooded locations which occurred in the year 2007, 2009 and 2013 
(Fig. 1). The flooded locations were identified from the historical flood 
marks (Fig. 3). At a flood mark location, the information of code, co-
ordinates (longitude and latitude), address, and flood depth were 
recorded. The flood inventory data were collected from the Quang Nam 
Provincial Committee of Natural Disaster Prevention and Control. The 
data was used for the development of flood susceptibility maps. We also 
referenced the inundation maps data of previous studies by Luu et al. 

(2018), Chau et al. (2013) and Ho and Umitsu (2011); and generated the 
same number of non-flood locations. 

3.3.3. Flood consequences assessment 
In this step, the maps of flood consequences related to human health 

and financial impact were combined to create the final flood conse-
quences assessment map. The weights of the layers were generated using 
the AHP method. 

3.3.4. Flood risk assessment 
In the final step, the best flood susceptibility assessment map in the 

first step was combined with the consequences assessment map to 
generate the final flood risk assessment map for the study area. We used 
the Weighted Sum tool to integrate layers in GIS application. 

3.4. Methods used 

3.4.1. Decision Table (DT) 
Decision tables are classification models used for prediction (Kohavi, 

1997). It generates several training variables which made up the 
labelled instances. The DT is invested for the majorities of class with a 
rules mapping. It is made up of two components: (1) the set of func-
tionalities designated by the diagram and (2) the set of the majority of 
labelled instances (Kohavi, 1997). Each instance has a value for a feature 
and is labelled in the schema (Kohavi, 1997). With an instance is not 
labelled I, the labelled attributes to the instance classified by DT is 
calculated as follows: 

If τ is the entire instance that is labelled in the corresponding DT with 
the given instance I, where the instances in the schema request a match 
and all other functionality is ignored. If τ = 0, return the majority classes 
in DT, otherwise return the majority classes in τ, the values do not 
determine which calls the distinct values in the process. If err (h, f) 
presents the hypothesis errors h for the function f, we estimate errors 
when using independent test data τ as in the following equation: 

êrr(h, τ) =
1

|τ|

∑

(xi ;yi)

L(h(xi), (yi) (2) 

In this study, the DT was trained with hyper-parameters provided in 
Table 1. 

3.4.2. AdaBoost 
AdaBoost algorithm is considered to be one of the popular methods 

that are used to solve binary classification math. Its algorithm is 
replaced in the multiclass without dividing it to several problems with 
two classes (Fan and Wang, 2011). In addition, this algorithm combines 
with a weak classifier to build a powerful hybrid algorithm. The weak 
classifications are assigned weights to improve the classifications of the 
previous incorrectly classified sampling. The construction model is the 
decision tree model, which is supported by the model coefficients. In this 
study, the AdaBoost was trained and constructed with hyper-parameters 
provided in Table 1. 

3.4.3. Bagging 
Bagging is considered to be one of the smooth machine learning 

methods proposed by Breiman in 1996 (Breiman, 1996). It is proposed 
to reduce variance without increasing too much bias error. Bagging 
method is a valuable tool for evaluating the natural disasters in general 
and the flood in particular. It is related to the model prediction 
improvement capacity due to the capacity for sensitivity in small 
changes to training data. In Bagging, the bootstrap technique is used to 
select the variables randomly with the replacement capacity to construct 
several samples to create the training data (Galar et al., 2011). Each of 
the subsets is prepared to build the decision tree, which is synthesized in 
the final models. Class prediction of the new element comes with the 
majority voting strategy derived from the class prediction of the basic 

Fig. 5. Frequency analysis of past and present flood occurrences on the fac-
tor maps. 
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model. In this study, the Bagging was trained and constructed with 
hyper-parameters provided in Table 1. 

3.4.4. Relief-F feature selection method 
The selection of influencing factors plays an essential role in the 

process of constructing the flood susceptibility model because all the 

features (factors) may not be relevant in modelling (Hong, 2018; Wang 
et al., 2016; Yariyan, 2020a). Feature selection is considered to be one of 
the most critical issues in the sample determination process, and this 
supported by machine learning focuses the algorithm on the factors most 
significant influence on the classification prediction (Van Dao, 2020). 
The Relief-F method is considered to be one of the most popular methods 

Fig. 6. Maps of flood consequences on human health.  

Fig. 7. Maps of flood consequences on financial impact.  
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for performing this task. This algorithm has the ability to not only 
support binary class problems but also to solve binary class problems 
(Urbanowicz et al., 2018). This algorithm is based on the summaries of 
the weightings of the factors according to their suitability for the 
objective (Saha et al., 2020). 

3.4.5. Validation methods 
Statistical measures used to validate the models include True Posi-

tive (TP), True Negative (TN), False Positive (FP), False Negative (FN), 
Positive predictive value (PPV), Negative predictive value (NPV), 
Sensitivity (SST), Specificity (SPF), Accuracy (ACC), Kappa (K), Root 
Mean Squared Error (RMSE) and Reciever Operating Characteristic 
(ROC) curve. These methods were used to evaluate the performance of 
models (Pham et al., 2019b) for the development of reliable flood sus-
ceptibility maps. 

In this study, statistical measures PPV and NPV are the proportion of 

Fig. 8. . The methodology of flood risk assessment used in this study.  

Table 1 
Hyper-parameters of models used in this study.  

No Parameters Models 
DT ABMDT BDT 

1 Batch Size 100 100 100 
2 Cross validation 1 – – 

3 Number of decimal places 2 2 2 
4 Search Best Frist – – 

5 Number of interations – 10 10 
6 Seed – 1 1 
7 Weight Threshold – 100 – 

8 Number of execution slots – – 1 
9 Base classifier – DT DT  
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pixels that are correctly classified as flood and non-flood, respectively. 
SST and SPF are the rates of the number of flood and non-flood pixels. 
ACC is one of the most popular metrics that is used to assess the per-
formance of models (Bennett, 2013; Janizadeh, 2019). This measure is 
represented by the proportion of the number of pixel flood and non- 
flood pixel. Cohen’s kappa coefficient (k) is an efficient statistics mea-
sure that helps to measure random consensus among classification 
components. It calculates the consensus between the two evaluations 
variables used to classify N objects into C mutually exclusive sets. The 
value of kappa varies from 0 to 1, where value 1 indicates perfect model 
performance (Pham et al., 2016, 2018). RMSE indicates the level of 
dispersion of predicted values from actual values. The model is consid-
ered perfect when the RMSE value is small. ROC is one of the most used 
measures by researchers to assess the predictive capacity and classifi-
cation quality of the model (Gorsevski et al., 2006; Mohammady et al., 
2012). Area Under the ROC curve (AUC) is often used to quantitatively 
evaluate the predictive capability of the models. Value of AUC equals to 
1 indicates perfect model performance. 

In addition, the Wilcoxon signed-rank test was used to check the 
statistical differences between the flood models (Pham et al., 2019a). 
This algorithm has been applied widely to verify the statistical signifi-
cance between models (Khosravi, 2018). To apply this method, two 
values (p and Z) were used with the null hypothesis that the models were 
not statistically different at the level of 0.05, which was constructed. If 
the Z values are higher than the upper limit value (1.96) and lower limit 
value (−1.96), as well as p < 0.05. This assumption was rejected; 
therefore, the performance of the models is different in terms of statistics 
(Dietterich, 1998). 

3.4.6. Multi-Criteria decision analysis (MCDA) 
MCDA methods allow to work with quantitative variables and are 

applied to decision-making processes (Huang et al., 2011). Several 
popular MCDA methods used in flood risk assessment are Analytical 
Hierarchy Process (AHP) (Saaty, 2003), Analytic Network Process (ANP) 
(Saaty and Vargas, 2006), and Ordered Weighted Averaging (OWA) 
(Makropoulos and Butler, 2006). The integration of MCDA methods 
with GIS analytical techniques are used for spatial analysis of various 
assessments and decision problems (Malczewski, 2006). Weighted 
Linear Combination (WLC) method is often used to integrate MCDA 
methods in GIS environment (Malczewski, 2000). In this study, we used 
one of the most popular MCDA methods, namely AHP, to generate 
weights for the indicators. The WLC method was then used to incorpo-
rate the weighted indicator layers into a GIS framework. 

4. Results and analysis 

4.1. Flood susceptibility assessment map 

4.1.1. Important factors used for the flood models 
In the susceptibility modelling, it is desirable to remove unnecessary 

or unimportant factors which might affect the accuracy of the prediction 
models. Therefore, feature selection techniques are being used to vali-
date and select the important factors for developing machine learning 
models (Hoa, 2019). In this study, Relief-F, which is a popular feature 
selection method (Yang et al., 2011), was applied in the model study 
(Table 2). The results suggest that elevation (W = 0.7235), rainfall (W =
0.6729), slope (W = 0.6069) are the most important influencing factors 
(W > 6) for the flood modelling in the study area. This is consistent with 
other similar flood studies (Degiorgis, 2012a; Garrote and Bras, 1995; 
Hosseini, 2020; Shrestha, 2014). 

4.1.2. Validation of the models 
Validation of the studied susceptibility models (ABMDT, BDT, and 

DT) was carried out using various standard quantitative indices on both 
training and testing datasets (Table 3 and Fig. 9). In terms of training 
data, the results show that the BDT model has a better value of NPV 
(99.115%) and SST (99.032%) while the ABMDT has a better value of 
PPV (92.183%), SPF (92.639), and ACC (95.280) compared to the other 
models. For validation data, the BDT model has the best value of PPV 
(86.391%), NPV (99.408%), SST (99.320%), SPF (87.958%), and ACC 
(92.899) compared to other models. The best k value of 0.906 is for the 
ABMDT model in terms of training data, whereas the best k value for the 
BDT model is 0.858 in terms of testing data. 

The ABMDT model has the lowest value of RMSE on training dataset 
(0.197), whereas the BDT model has the lowest RMSE value on testing 
dataset (0.245) (Table 3). The results of the ROC analysis show that the 
models of BDT and ABMDT have better performance with AUC (0.977), 
then the DT model (0.961) in terms of training data. For validation data, 
the BDT model has better performance with AUC (0.96), followed by the 
ABMDT with AUC (0.953) and DT model with AUC (0.929), respectively 
(Fig. 9). 

Wilcoxon signed-rank test was carried out to evaluate the signifi-
cance of the statistical differences of the model performance (Tables 4 
and 5). It can be observed that on both training and testing datasets, the 
Z-values of the comparative pairs are higher than the upper limit value 
(1.96) and lower limit value (−1.96), and the p-values are smaller than 
the threshold value of 0.05. Therefore, it can be stated that the differ-
ences in the performance of the models are statistical significance in this 
study. 

4.1.3. Flood susceptibility mapping 
Flood susceptibility indexes of the study area were generated during 

the training phase of the models. These indexes were used for the con-
struction and classification of flood susceptibility maps into five classes: 
very low susceptibility, low susceptibility, moderate susceptibility, high 
susceptibility, and very high susceptibility using natural break classifi-
cation method (Fig. 10). It can be observed that for the BDT model, 

Table 2 
Importance of the flood factors using Relief-F feature selection.  

Rank Weights (W) Factor conditions 
1  0.7235 Elevation 
2  0.6729 Rainfall 
3  0.6069 Slope 
4  0.5982 Land cover 
5  0.5803 Lithology 
6  0.4384 TWI 
7  0.2949 STI 
8  0.2743 River density 
9  0.2587 Curvature 
10  0.2435 Plan curvature 
11  0.1929 Distance from rivers 
12  0.1856 Profile curvature 
13  0.0819 SPI 
14  0.0152 Flow accumulation  

Table 3 
Validation of the models using quantitative indices.  

Parameters Training dataset Validating dataset 
BDT ABMDT DT BDT ABMDT DT 

PPV (%)  90.560  92.183  90.560  86.391  86.391  85.799 
NPV (%)  99.115  98.378  98.378  99.408  98.225  98.817 
SST (%)  99.032  98.270  98.240  99.320  97.987  98.639 
SPF (%)  91.304  92.639  91.245  87.958  87.831  87.435 
ACC (%)  94.838  95.280  94.469  92.899  92.308  92.308 
k  0.897  0.906  0.889  0.858  0.846  0.846 
RMSE  0.228  0.197  0.219  0.245  0.249  0.262  
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15.9% of the study area is located in the very low susceptibility area, 
45.94% in the low susceptibility area, 19.8% in the moderate suscepti-
bility area, and 4.682% and 14.49% in the high susceptibility area and 
very high susceptibility area. For the ABMDT model, 80.13% of the 
study area is in the very low susceptibility area, 2.794%, 2.83%, 
4.617%, and9.626% is in the low, moderate, high and very high sus-
ceptibility areas, respectively. For the DT model, 64.5% of the study area 
is located in the very low susceptibility area, 11.09%, 5.421%, 4.045%, 

Fig. 9. Analysis of ROC of the models: (a) training dataset and (b) vali-
dating dataset. 

Table 4 
Z-values, p-values and significant levels of the different models using Wilcoxon 
signed-rank test and training dataset.  

No Comparative pairs Z-value p-value Significance level 
1 BDT vs ABMDT  14.337  <0.0001 Yes 
2 BDT vs DT  21.434  <0.0001 Yes 
3 ABMDT vs DT  6.049  <0.0001 Yes  

Table 5 
Z and p values and significant levels of the different models using Wilcoxon 
signed-rank test and testing dataset.  

No Comparative pairs Z-value p-value Significance level 
1 BDT vs ABMDT  5.926  <0.0001 Yes 
2 BDT vs DT  10.246  <0.0001 Yes 
3 ABMDT vs DT  4.028  0.0001 Yes  

Fig. 10. Flood susceptibility maps using different models: (a) ABMDT, (b) BDT, 
and DT. 
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and 14.94% are located in the low, moderate, high and very high sus-
ceptibility areas, respectively (Fig. 11). It is observed that high and very 
high susceptibility zones are located along rivers in floodplain areas. It 
can be observed that the maps produced by the BDT model show similar 
results. Therefore, it can be reasonably stated that the flood suscepti-
bility map produced by the BDT model is the most reliable compared 
with other models; thus, it was used for developing flood risk map in this 
study. 

4.2. Flood consequences assessment map 

In this study, we used Super Decisions software to calculate AHP 
algorithms (Whitaker and Adams, 2005) and the Weighted Sum tool in 
ArcGIS software to integrate the weighted indicator layers into a GIS 
framework. The flood consequences on human health and financial 
impact were analyzed as described in the conceptual framework AHP 
works by setting priorities for multiple criteria evaluated by experts to 
derive the best decision (Saaty, 1990). The weights of the criteria in the 
AHP method are based on subjective assessment of some experts (God-
frey et al., 2015; Kienberger et al., 2009; Kokangül et al., 2017; Mog-
hadas et al., 2019) or based on the author experience assessment 
(Dewan, 2013; Kandilioti and Makropoulos, 2012; Li et al., 2013). In the 
present study, we used the author experience-based evaluation. We also 
refer to the related studies using AHP to evaluate flood risk criteria 
(Dewan, 2013; Godfrey et al., 2015; Kienberger et al., 2009; Kokangül 
et al., 2017; Moghadas et al., 2019; Velasquez and Hester, 2013). 

The consequences on human health are assessed by the combination 
of population density, poverty rate, road density and number of medical 
staff (Fig. 12(a)). The consequences on financial impact are evaluated by 
considering three indicators of industrial facility density, service and 
commercial density and land-use categories (Fig. 12(b)). The weights of 
criteria and sub-criteria are presented in Table 6. We used the integrated 
AHP-WLC to combine indicators in the GIS environment. The Weighted 
Sum tool in ArcGIS software was used to overlay the weighted indicators 
weighted in Table 6. The final flood consequence map is displayed in 
Fig. 12(c). 

4.3. Flood risk assessment map 

Flood risk was assessed in this study by combining the hybrid ma-
chine learning BDTmodel-based flood susceptibility map and the flood 
consequences map. The flood risk assessment map was created by 
overlaying the flood susceptibility map and flood consequences map 
using Weighted Sum technique in GIS environment (Fig. 13). The risk 
scores were normalized to a range of 0–1. Out of the 1,056,609 ha total 
area of the province, 915,264 ha (86.62%) is in very low risk areas, 
54,132 ha (5.12%) in low risk areas, 48,989 ha (4.64%) in medium risk 
areas, 29,308 ha (2.77%) in high risk areas and 8,916 ha (0.84%) in 
extremely high risk areas. 

5. Discussion 

Flood is one of the most destructive natural hazards in Vietnam, 
requiring systematic study to prevent loss of life and destruction of 
property for sustainable development. Therefore, developing flood risk 
maps is a necessary step to help decision-makers in flood risk manage-
ment (Kourgialas and Karatzas, 2011). Even though various methods 
and approaches have been proposed and applied to assess flood risk; 
however, the complex geo-morphological conditions and dynamic 
human activities which cause changes in the morphology and destruc-
tion of forests pose difficulties in predicting flood risks accurately (Zahar 
et al., 2008). For this reason, various algorithms were developed and 
applied for the flood risk assessment and development of accurate pre-
dictive models. In this study, two advanced hybrid models (BDT and 
ABMDT) and single DT model were validated and compared to select the 
best model and map which was integrated with the MCDA (AHP) to 

Fig. 11. Analysis of the performance of flash flood susceptibility maps using 
different models. 
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develop flood risk map of the Quang Nam province, Vietnam. 
Validation results show that all developed models (BDT, ABMDT, 

and DT) performed well for flood susceptibility assessing and modelling. 
It is reasonable as the DT model is an effective popular machine learning 
algorithm to solve the classification problem using transforming the data 
on the table. Its advantages are: (i) the DT model requires less effort for 
the data preprocessing process and (ii) it does not require data stan-
dardization which is very easy to understand and intuitive. The DT 

algorithm is sometimes more complicated compared to the other algo-
rithms, and takes time to form the prediction model. In this study, the 
results also show that the BDT model is the best compared to other 
models for flood susceptibility mapping in the study area. This is 
appropriate because the BDT model used Bagging ensemble which is an 
excellent ensemble tool to improve the accuracy of individual classifi-
cation prediction and the Radial Basis Function kernel used in Bagging 
ensemble can enhance the stability of the DT model. Simultaneously, the 
Bootstrap sampling technique used in the Bagging model was used to 
reduce the sensitivity of single classification to noise in training data sets 
(Pham and Prakash, 2019). The model variance is reduced, which can 
improve the accuracy of the individual model like DT (Breiman, 1996). 
The advantage of the Bagging model is presented in the change from the 
basic classification generalization error to the generalization error 
calculated on the smaller training data. Therefore, it can be used for the 
classification, which has the learning curves of reduced (Thai Pham, 
2019). Thus, the BDT is observed as the best model for flood suscepti-
bility modelling in this study compared with other models (ABMDT and 
DT). However, it is not suitable for linear classifications because of its 
classifications. In addition, it cannot be adapted for small or very large 
training data (Pham and Prakash, 2019; Skurichina and Duin, 2002). 
This finding of this study is also in comparison with other published 
works (Arabameri et al., 2020; Chen, 2019; Yariyan, 2020). 

In this study, flood susceptibility map was combined with the flood 
consequences assessment map using AHP and WLC techniques to 
develop a flood risk map. Whereas, the flood susceptibility map was 
generated by the best hybrid ML model (BDT). Flood consequences 
reflect the impacts of human health and financial impacts (Winsemius 
et al., 2013). We devised criteria for human health impact, including 
population density, road density, poverty rate and healthcare facility; 
and criteria for financial impact including industrial facility density, 
service and commercial facility density, and land-use categories. In 
literature, some studies have additionally focused on flood risk assess-
ment in terms of combining flood vulnerability and flood hazards such 
as Scheuer et al. (2011), Masuya (2014) and Lee et al. (2013). Several 
studies analyzed flood risk in the combination of hazard, exposure and 
vulnerability (Foudi et al., 2015; Winsemius et al., 2013). Some recent 
studies focused on the consequences of flood risk since the consequences 

Fig. 12. Flood consequence maps used in this study: (a) consequences on human health, (b) consequences on financial impact, and (c) final flood consequence map.  

Table 6 
Weights of the indicators using AHP model for flood consequences assessment.  

Component Criteria Weight Sub-criteria Weight 
Facilities and 

Health 
Density 
Population 

0.50803 <50  0.05586 
50–200  0.12324 
200–500  0.21898 
>500  0.60192 

Provety Rate 0.24489 <10%  0.07545 
10–20%  0.11236 
20–40%  0.24447 
>40%  0.56772 

Healthcare 
facilities 

0.09259 <1  0.56932 
1–3  0.22404 
3–5  0.13298 
>5  0.07366 

Road density 0.15449 <500  0.50677 
500–1000  0.26412 
1000–2000  0.14279 
>2000  0.08632  

Financial 
impacts 

Landuse 0.5 Agricultural land  0.28708 
Build-up  0.49997 
Forest and 
Vegetation  

0.09098 

Water bodies  0.12197 
Industrial facility 
density 

0.25 <5  0.07780 
5–10  0.12479 
10–20  0.30557 
>20  0.49184 

Service facility 
density 

0.25 <50  0.08632 
50–100  0.14279 
100–200  0.26412 
>200  0.50677  
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reflect the potential impacts of flood hazard (Albano et al., 2014; Jato- 
Espino et al., 2019). In this study, we assessed flood risk by combining 
flood susceptibility and flood consequences, which is a suitable 
approach for flood risk assessment in Quang Nam province, Vietnam. 
Finally, MCDA is used to incorporate the flood susceptibility and con-
sequences components. In flood risk modelling, MCDA methods are 
often used in the risk analysis due to several advantages, such as criteria 
and sub-criteria systematization (Ishizaka and Labib, 2009), suitability 
for GIS integration (Malczewski, 2006), and consistency in judgment 
(Koczkodaj, 2017). 

The flood risk assessment map shows high flood risk zones/locations 
which are required to be managed on a priority basis. In general, the 
integration of a hybrid intelligence model for flood susceptibility map 
and MCDA for flood consequences map is a good approach for devel-
oping a reliable flood risk map in data-scarce areas also. In addition, 
when we compared the flood risk assessment map of this study with the 
Quang Nam inundation map of Chau et al. (2013) and Luu et al. (2018), 
it is observed that the high flood risk areas are located close to and along 
rivers that are in and around floodplain areas. The result is compatible 
with previous studies such as Ho and Umitsu (2011), Chau et al. (2013) 
and Luu et al. (2018). The flooding occurs in the low lying areas of Vu 
Gia-Thu Bon river basin and affects districts of Dai Loc, Hoi An, Dien 
Ban, Duy Xuyen, Nong Son, Que Son, and Tam Ky. 

6. Concluding remarks 

In this study, we developed a soft computing based flook risk 
framework in which the flood risk map was generated by combing a 
flood susceptibility map and a flood consequences map. The flood sus-
ceptibility map was created using a hybrid AI model (BDT), and the 
flood consequences map was created by using AHP technique. The case 
study was Quang Nam province, Vietnam. 

Validation results show that all the proposed models performed well 
for constructing flood susceptibility map. However, the performance of 
the BDT model (AUC 0.96) is the best in comparison to other models, 
namely ABMDT (AUC:0.953) and DT (AUC:0.929). Thus, the flood 
susceptibility map produced by BDT is the best map which was 

combined with a consequences map to develop a reliable flood risk map 
of the study area. 

In general, the AI or ML integrated with MCDA approach is a suitable 
framework and approach for developing a reliable flood risk map that 
can be used and applied in other flood-prone areas considering local geo- 
environmental conditions. Advantage of this approach is that it does not 
require time series meteorological and streamflow data, or updated river 
cross-section data, which are not readily available in many data-scarce 
areas. However, this study has two main limitations. First, we can not 
analyze the frequency of flood events in the flood susceptibility mapping 
since AI or ML models use flood and non-flood locations as a dependent 
variable and flood influencing factors as predictors. Second, the pro-
posed integrated approach needs to be validated in other flood-prone 
areas of Vietnam. 
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