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ARTICLE INFO ABSTRACT

JEL classification: Investors and regulators require reliable estimates of physical climate risks for decision-making.
G12 While assessing these risks is challenging, several commercial data providers and academics
G24 have started to develop firm-level physical risk scores. We compare six physical risk scores.
G32 We find a substantial divergence between these scores, also among those based on similar
Q54 methodologies. We show how this divergence could cause problems when testing whether
Keywords: financial markets are pricing physical risks. Hence, financial markets may not adequately
Climate change account for the physical risk exposure of corporations using available risk scores. Finally, we
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identify key sources of uncertainty for further investigation.

1. Introduction

The physical impacts of climate change pose major economic risks. According to Swiss Re Institute (2020), weather-related
events such as storms, floods, droughts, and wildfires caused global annual economic losses of USD 212bn on average over the
last decade, and climate change is expected to lead to more frequent and more severe extreme weather events in the future.'
Consequently, financial institutions aim to integrate these additional risks in financial decision-making. To do so, investors depend
on reliable information about a firm’s exposure to this risk. However, companies’ disclosure of climate-related risks so far is
limited and voluntary in most countries. TCFD (2019) and SASB (2018) offer guidance in climate risk disclosure. Nevertheless,
the standardization of climate risk disclosure is still evolving. Moreover, the lack of information about climate risks remains a
critical constraint to reflect the risks of climate change in financial decision-making (Behnam et al., 2020).

In response, several commercial providers have begun to develop climate risk scores to provide investors with firm-level
indicators of physical climate risk. Some of the large credit-rating agencies entered the race to provide climate-risk scores,
representing a significant step towards financial institutions committing to the idea that climate change should be a routine
consideration when evaluating any company’s financial strength.> Therefore, climate risk scores have the potential to steer capital
towards climate-resilient business models and incentivize corporations to pursue resiliency.

However, Fiedler et al. (2021) argue that the scientific base for climate risk scores is still developing, raising the question of
whether the use of these scores sufficiently improves financial decision-making. To explore this question, we compare six scores
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Fig. 1. Correlation measures and Distributions of scores: Horizon 2050, RCP8.5. This graph shows the distribution of each score in the diagonal panels. In the
off-diagonal panels it shows scatterplots, Pearson correlation coefficient (first row), and Kendall’s tau (second row) for each score pair. Model-based scores reflect
the RCP8.5 climate change scenario. (***p < 0.01 in red, **p < 0.05 in blue, *p < 0.1 in green). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

for firm-level physical climate risks to determine to what extent scores from different providers converge. The metrics focus on the
physical risks of climate change, defined as a firm’s additional exposure to hazards associated with a changing climate. Hazards
include acute hazards such as floods, droughts, storms and chronic hazards such as sea-level rise.

2. Data

In our analysis, we include model-based approaches that model corporations’ risks on the basis of climate models and language-
based approaches that quantify risk on the basis of textual sources about corporations’ climate risk exposure. Model-based approaches
include the commercial scores from Trucost (M1), Carbon 4 Finance (M2) and Southpole (M3). Language-based approaches include a
commercial score from Truvalue Labs (L1), and two academic scores, Firm-level Climate Change Exposure (L2) (Sautner et al., 2020a)
and BERT-based climate risk measure (L3) (Kolbel et al., 2020). L1 relies on news articles as a text source, L2 on earnings call’s
transcripts, and L3 on regulatory filings (see Table A.1 in the Appendix for details on the methodologies).

Our sample consists of 408 US corporations included in the S&P 500, the Dow Jones Industrial Average (DJ30) and the Dow Jones
Composite Average (DJ65).° We ensure that scores are comparable with regards to objective and assumptions. All scores represent
the available information at the end of 2019. For model-based scores, we compare scores that aggregate different climate hazards
and assess physical risk under an RCP8.5 scenario for a time horizon until 2050.* Language-based scores were averaged over time
to facilitate comparison (Table A.1).

3. Score correlations

Fig. 1 displays the distributions of climate risk scores in the diagonal panels and correlations in the off-diagonal panels. Pearson
correlations range between —0.10 and 0.49 (Kendall’s tau —0.08 to 0.33), indicating overall a low level of agreement between scores
over the sample. Six out of 15 correlations are significantly different from zero at the 1%-significance level for Pearson’s correlation
and Kendall’s tau. The overall divergence also shows up visually in the scatterplots.

3 In total, we have 511 firms and 408 of them are covered by all climate-score providers.
4 All our results remain robust when we analyze the RCP4.5 scenario. These results can be obtained from the authors.
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Table 1

Sector ranking: Horizon 2050, RCP8.5.
Sector M1 M2 M3 L1 L2 L3 Avg SD
Health Care 9 6 7 10 9 11 8.7 1.9
Consumer Staples 7 5 5 4 8 3 5.3 1.9
Consumer Discretionary 3 8 9 6 6 6 6.3 21
Information Technology 10 7 6 5 10 9 7.8 2.1
Energy 4 2 1 7 5 4 3.8 2.1
Materials 5 3 2 8 3 2 3.8 2.3
Industrials 6 4 8 2 2 7 4.8 2.6
Communication Services 8 10 10 3 11 10 8.7 2.9
Financials 11 9 3 1 7 8 6.5 3.8
Real Estate 2 11 11 9 4 5 7.0 3.8
Utilities 1 1 4 11 1 1 3.2 4.0

This table shows sector rankings (11 sectors) for each score, average of score ranks (Avg), and standard
deviation (SD) across score rankings for each sector. The sector ranks are based on the average score
value per sector.

Within model-based scores, M2 is significantly and positively correlated with M1 and M3, but with a very low correlation. The
correlation between M1 and M3, however, is significantly negative, implying not just a divergent but slightly opposite view on
climate risk. Within the language-based scores, the correlation between L2 and L3 is significant but weak, whereas L1 does not
significantly correlate with any other score. These observations change only marginally when considering an RCP4.5 scenario.®

Potentially, different providers arrive at a similar ranking within sectors. We therefore analyze the rank correlations within
sectors as defined by the Global Industry Classification Standard (GICS) and present the results in Appendix B. Overall, within-sector
correlations also indicate a substantial divergence of physical risk scores. Hence, no sector emerges for which the providers exhibit
more agreement on physical climate risk exposures, also not for Real Estate, although the literature argues that physical risks in real
estate are comparatively easier to model and better understood (Baldauf et al., 2020; McNamara and Keeler, 2013).

4. Sector rankings

While correlations are low within sectors, scores might agree on which parts of the economy are most affected by physical climate
risk. Table 1 shows that, in terms of average ranking, Utilities, Energy, and Materials are considered as the most exposed sectors.®
This finding seems reasonable, given that all these sectors rely heavily on fixed tangible assets exposed to natural hazards. Health
Care, Communication Services and Information Technology turn out to be the least exposed to physical climate risk.

Calculating the standard deviation (SD) across the six score rankings for each sector and interpreting SD as a measure of model
uncertainty, we find substantial differences in uncertainty across sectors. Health Care, Consumer Staples and Consumer Discretionary
have the lowest dispersion across providers. In contrast, Financials, Utilities, and Real Estate exhibit a large degree of dispersion.
Real Estate has the second-highest standard deviation which is in line with the low within-sector correlations for this sector (see
Table B.1). For Utilities, the six scores display the greatest standard deviation, which is driven by L1. While four of the six providers
agree that this sector is ranked as the most exposed to physical risk, L1 shows exactly the opposite ranking.

5. Portfolio sorts

A common approach in the asset pricing literature to investigate whether the financial market indeed prices a risk factor is
sorting stocks into high- and low-risk portfolios, which also has been applied by Bansal et al. (2016) and Bolton and Kacperczyk
(2020) to climate change risks recently. To illustrate the potential consequences of the significant disagreement in risk assessments,
we examine the robustness of the sorting mechanism to the use of different scoring models. To this end, we draw Venn diagrams,
which visualize the possible logical relations between different models and approaches.

Fig. 2 presents the different Venn diagrams for which we focus on the (commonly used) upper quintile and tercile. With complete
agreement, the Venn diagrams would collapse into a single circle. However, we find that there is very little agreement both within
and across approaches. For instance, for the model-based approaches under the RCP 8.5 (RCP 4.5) and using quintiles, we find
only 10 (7) companies that are sorted consistently by M1 to M3 into the upper quintile. For a total of 408 companies, the quintile
should theoretically contain 82 companies. Hence, we can interpret these numbers as an agreement of 12.2% (8.5%) on the quintile
constituents. Switching to terciles, the relative level of agreement for the model-based approaches improves slightly to 14.8%
(16.4%).

For language-based approaches, the agreement is even less. For the upper quintile portfolio, L1 to L3 only agree on three
companies, and for the upper tercile only on ten companies. When comparing the model-based and language-based approaches

5 The corresponding analysis can be obtained from the authors.
6 We recall that a low score reflects a high risk exposure.
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Fig. 2. Venn diagrams for portfolio sort agreement. This graph shows the Venn diagrams for the upper quintile and tercile portfolios. The sample consists of
408 companies in total. Hence, quantiles and terciles ideally consist of 82 and 122 firms. The first three diagrams in each row provide a separate analysis for the
model-based and language-based approaches. We compare the model-based approaches M1 to M3 for the RCP 8.5 and RCP 4.5 scenarios and the language-based
approaches L1 to L3 separately. In the last column, we compare the model-based and the language-based models together where the number of companies for
model-based scores and for language-based for the respective percentile are displayed and the overall intersection across all six scores for RCP8.5. With perfect
agreement, the circles for each Venn diagram would collapse into a single circle. Note that L3 provides non-zero scores for 70 companies.

jointly, we find only one company that consistently ranks in the top quintile for both approaches, i.e., across all six scores. For
the upper tercile, there are two companies consistently ranked. Since the tercile should theoretically contain 122 companies, the
agreement is less than 2%. These results show that all inferences drawn from a risk premium analysis for physical climate risk based
on portfolio sorts are highly sensitive to the choice of the risk score.

6. Sources of uncertainty

The documented divergence of scores suggests that there remains substantial uncertainty about firms’ exposure to physical
climate risk. Such a kind of model uncertainty discussed in Brock and Hansen (2018) is to be expected, given the inherent complexity
of assessing a firm’s physical risk exposure. To reduce this uncertainty going forward, we qualitatively identify the key sources of
uncertainty and suggest measures to address them.

We first discuss model-based approaches. All three approaches rely, according to their methodology description, on a basic
framework of hazards, exposure, and vulnerability. The first component, hazard, is typically derived from climate models that are
publicly available. It is commendable that assessments rely on widely available climate change scenarios. However, Fiedler et al.
(2021) point out that there is a mis-match between the coverage of climate models and financial risk analysis requirements. This
includes that climate models themselves diverge in their predictions, especially at high spatial resolution and short time frames,
which are of particular interest to investors. Thus, transparency about the climate model behind the scores and its limitations is a
critical first step.

The second element, exposure, is based on a firm’s spatial distribution of physical assets and supply chains. These data are
challenging and expensive to collect, and score providers need to resort to proprietary data. Differences in these asset-level data sets
could be driving risk assessments apart. For example, the strikingly diverging assessments for the real estate sector could be driven
by inconsistent information about asset locations. In order to explore this possibility, researchers would benefit from an open-source
data set of asset locations, that could be used to benchmark different methodologies. Potentially, the National Establishment Time
Series (NETS) data already applied in Addoum et al. (2020) could serve in this role. Commercial providers of risk scores could use
the reference data to benchmark their own methodologies and extend the scientifically tested methods to other data sets that may
be larger and proprietary.

The third element, vulnerability at the entity level, is perhaps the least well understood and, therefore, a major source of
uncertainty. The same firm may suffer vastly different financial consequences, depending on whether it was prepared for potential
exposure. Such a measure of preparedness could include management’s awareness of risks, the build-up of response capacity, and
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insurance against the risks. It may even be the case that firms emerge more profitable after certain events as shown in Horwitz
(2009). A way forward would be to compare scores specifically aiming to measure vulnerability, given that such an assessment is
likely to contain a high degree of judgment.

The construction of language-based scores relies crucially on the accessed text sources and the natural language processing (NLP)
algorithm that is used to analyze it. We identify three sources of uncertainties for language-based approaches that are likely to drive
score divergence. First, language-based scores are limited to the knowledge contained in the analyzed text sources and depend on
the applied NLP-algorithm. L1 relies on media sources, L2 on earnings calls transcripts, and L3 on regulatory filings. It is therefore
obvious that these scores represent different perspectives and information sets. Another critical point is the type and precision of the
algorithms used in the text analysis. Varini et al. (2020) show that keyword-based methods tend to perform worse than contextual
algorithms in the task of identifying sentences that address the topic of climate change. Thus, uncertainty in language based scores
comes from the text source and the algorithm.

The second source of uncertainty for language-based scores is that they tend to measure a relative rather than an absolute view
of physical climate risk. For example, L2 reports the fraction of sentences in an earnings call that were dedicated to physical climate
risks (and L3 adopts a similar approach). Other prominent issues, such as COVID19, can crowd out physical climate risk. In other
words, the physical risk score is relative to other concurrent issues of concern. A possible solution may be to disentangle climate risks
from other risks that threaten the enterprise at the same time. Furthermore, language-based approaches may pick up the relative
change over time, given that information that was given previously is not necessarily repeated. These are important ways in which
language-based approaches can provide very different scores compared to model-based scores, which attempt to model absolute
exposure.

The third source of uncertainty for language-based scores is the unspecified future time horizon and climate change scenario.
Currently, algorithms do not detect whether statements refer to a specific scenario or time horizon, and this may in fact not be
specified in the text itself. As a result, it is uncertain when and under what conditions physical risks should be expected. Presumably,
text sources seldomly look ahead as far as 2050 or 2100, especially when the intended audience are investors or newspaper readers.
This is another important reason why language-based scores may differ from each other and from model-based scores. Identifying
the future time horizon and underlying scenario for a specific language-based score would reduce uncertainty in the score estimates
and is one next step to increase comparability between scores.

7. Conclusion

Our results show that currently available metrics of firm-level physical climate risk diverge substantially. This divergence raises
doubts whether investors have the necessary information to reflect physical climate risks in the prices of corporate stocks and bonds.
Absent reliable information, investors are exposed to sudden price adjustments when physical risks materialize, and companies have
a limited incentive to invest in climate resiliency.

Financial institutions aiming to integrate physical climate risk into their risk analysis should be aware that the choice of one
measure over another is very consequential for the outcome of such an analysis. Therefore, a comprehensive risk management
process should avoid placing too much confidence in a single score or ranking and strive to integrate the uncertainties around the
assessment of physical risk demonstrated in this study.

Given that more research is needed to drive progress, policymakers can accelerate the development of physical climate risk
metrics. Commercial providers of climate risk scores operate in a competitive market, which fosters innovation, but discourages the
sharing of underlying data with competitors. Therefore, policymakers should facilitate access to open data by requiring corporations
to disclose climate-related risks and relevant performance indicators.” The availability of such data would shift the competitive focus
from proprietary data collection to superior data analysis.

Finally, we emphasize that the fact that physical climate risks are hard to estimate does not imply that action should be delayed.
There is no doubt that these risks are relevant, as the most recent events in 2021, the heatwave in Canada and the US, and the
floods in Europe, have shown. Uncertainty about physical risks increases the urgency to address the underlying drivers of the risk,
i.e., to reduce global greenhouse gas emissions.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

7 See for example https://spatialfinanceinitiative.com/geoasset-project/data/.


https://spatialfinanceinitiative.com/geoasset-project/data/

L.I. Hain et al. Finance Research Letters 46 (2022) 102406

Appendix A

A.1. Methodologies

For our analysis, we adopt the widely accepted definitions of physical climate risk provided by the Task Force for Climate-Related
Financial Disclosure (TCFD, 2017) and the Sustainability Accounting Standards Board (SASB) (SASB, 2018). The providers of the
data used in this study also refer to these definitions. The two definitions state that physical climate risks relate to the exposure of
a firm’s owned or controlled assets and operations to actual and potential physical impacts of climate change. These impacts can
be either acute, i.e., event-driven (e.g., extreme weather), or chronic, i.e., due to long-term shifts in climate patterns (e.g., sea-level
rise). Moreover, these risks lead to direct damage to assets, but they also exhibit indirect impacts from supply chain disruption.

Our sample comprises six different measures of physical climate risk. Initially, we identified a total of 19 data sets that offer some
form of climate risk scores. Based on a review of methodologies, we narrowed them down to ten data sets which were available
for academic research, offered sufficient documentation of their methods, and had the stated goal of assessing physical climate risk.
Our final selection of six scores come from both commercial and academic sources and rely on two main approaches:

1. Model-based approaches (labeled as M1 to M3) rely on climate models and combine the model’s predictions for various
climate hazards with a firm’s spatial distribution of assets. Combining these asset-level risks results in an aggregate score for
firm-level physical risk (Details of scores are shown in Table A.1).

2. Language-based approaches (labeled L1 to L3) rely on various text sources to collect company-level data concerning physical
climate risk topics. L1 relies on a wide variety of news and social media texts. L2 relies on earnings call transcripts, and L3
relies on 10K filings that firms are required to submit to the US Securities and Exchange Commission (SEC). Scores L2 and
L3 are provided by academics and are available open-source (Sautner et al., 2020b; Leippold, 2020).

A.2. Selection of comparable scores

Our objective is to compare scores that are as consistent with each other as possible. Most providers offer a variety of scores.
First, we ensure that all scores reflect the same point in time. As the model-based providers currently only provide data for one
point in time, we perform a cross-sectional analysis. It is not possible to obtain all scores at the exact same point in time, but given
that physical climate risk is most likely a property that evolves slowly, we do not view this as a major concern. Hence, we take
the available figures from each score at the end of 2019, which have been released either in 2018 or 2019. For the language-based
scores, which offer time-series data, we take averages over time to create comparable scores. For L1, we take the mean for the
year 2019 over daily data. For L2, we take a four-year average over yearly data covering the years 2016 to 2019. The reason to
choose this comparatively long period for L2 is that this score contains many zeros in any given year. This property is mitigated by
averaging over a longer time horizon. For L3 we choose data based on the 10K filings of 2019.

Second, we ensure that all model-based scores reflect the same modeling choices. This concerns specifically the climate change
scenario and the future time horizon. We choose the climate change scenario with RCP8.5 for the main analysis, which is available
for M1 and M2. RCP stands for Representative Concentration Pathway, and RCP 8.5 projects the level of radiative forcing by
greenhouse gas emissions to stabilize at 8.5 W/m2 by 2100. We also provide the corresponding results for RCP4.5. Score M3 offers
temperature scenarios that can be mapped to climate change scenarios, of which the 4-degree warming scenario is comparable to
RCP8.5, according to the data provider. For time horizon, we choose 2050 for M1 and 2040 to 2060 for M2. M3 does not offer
scores distinguishing between time horizons. Finally, we use the most aggregated scores from all providers that include all climate
hazards rather than scores that focus on specific climate hazards.

The language-based scores do not differentiate between climate change scenarios and future time horizons, but they also come in
variations. For L1 we choose a score called Insight Score, the most slow-moving score of three alternatives, which also incorporates
information from the past by an exponentially-weighted moving average component. For L2, we select the physical risk exposure
score. For L3 we use the physical risk score, computed in the same way as in Kolbel et al. (2020).

Appendix B. Correlations within sectors

We analyze rank correlations within sectors as defined by the Global Industry Classification Standard (GICS). Table B.1 suggests
that there are no sectors for which there is a pronounced agreement. On average, we find the highest agreement in Materials and
lowest in Real Estate. The low agreement on Real Estate is counterintuitive, since physical risks in real estate are comparatively easier
to model and better understood (Baldauf et al., 2020; McNamara and Keeler, 2013).

Among model-based scores, Information Technology is the sector where agreement is markedly higher, with significantly positive
correlations. However, there are also sectors with significant negative correlations, such as Financials and Consumer Staples. Out of
33 correlations between model-based scores, 18 are significant, but five of those 18 are negative. Among language-based scores,
correlations are mostly insignificant, with the notable exception of Materials between L2 and L3 (0.45 with p < 0.01). Out of
33 correlations, there are only three significant, none of which is negative. Across language- and model-based approaches, the
correlations show no distinctive pattern.
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Model-based

Data Provider Score Date Horizon Scenario Hazards Method description
Trucost, Trucost Aggregate Score 2019 Historic RCP2.6 7 Hazards: 5-step procedure:
Climate Change Hazard-specific Base(2020) RCP4.5 Water Stress 1. Step: Climate Hazard Mapping
Physical Risk Scores 2030 RCP8.5 Flood 2. Step: Physical Asset
Analytics, 2050 Heatwave Geolocation and Corporate
M1 Coldwave Ownership Mapping
Hurricane 3. Step: Asset and Company
Wildfire Level Physical Risk Scoring
Sea Level Rise 4. Step: Revenue Exposure Based
Physical Risk Estimation
5. Step: Composite Score
Calculation (Equally or Sensitivity
weighted) (Information based on
providers’ documentation)
Carbon4 Finance, Aggregate Score 2018 Past Horizon RCP4.5 7 direct Hazards: Function of: - Integrated Climate
Climate Risk Impact Hazard-specific 2040-2070 RCP6.0 Acute: changes in the intensity Hazard Rating (Direct Climate
Screening (CRIS), Scores 2070-2100 RCP8.5 or frequency of heat waves, Hazard Rating, Risk-aggravating
M2 rainfall extremes and storms, context rating) - Net Vulnerability
changes in the frequency and Rating (Gross-Vulnerability
duration of drought extremes Rating, Adaptability rating)
Chronic: sea-level rise, changes 3-step procedure
in rainfall patterns, increase in 1. Step: Collecting geographical
average temperature and sectoral breakdown of the
9 indirect Hazards: biodiversity company’s operations
migration and loss air quality 2. Step: Constructing risk ratings
degradation urban heat island for each hazard, each time
intensification water scarcity horizon, and each scenario
wildfires floods (river and 3. Step: Calculating Aggregated
groundwater) Risk Ratings - hazard-specific risk
landslides and mass mo scores: arithmetic average -
coastal floods multi-hazard risk scores:
coastal erosion geometric average (For details see
Carbon 4 (2017))
Southpole, Aggregate Score 2019 2030-2100 1 °C (RCP2.6) Damage functions cover hazards. Risk is defined via three
Physical Climate Risk 2 °C (RCP4.5) components:
Screening 3 °C - Exposure
for Investment 4 °C (RCP8.5) - Vulnerability
Portfolios, - Hazard
M3 2-step procedure to estimate
future physical climate risk for
three components:
1. Step: Identification of holding
context (geography, sector, etc.)
2. Step: Forward-looking risk
assessment (combining climate
modeling & vulnerability of
company) (Information based on
provider’s documentation)
Language-based
Data Provider Score Date Text Source Method description
Truvalue Labs, Pulse Score 2019 Variety of news and 4-step procedure:

ESG-Scoring (by
SASB-Category),
L1

Insight Score
Momentum Score

Average over
daily values

social media sources

1. Step: Data gathering (unstructured
data)

2. Step: Natural-Language Processing & Al,
Identification of ESG issues and companies
3. Step: Sentiment Analysis, positive/
negative ESG-issues

4. Step: Score for certain SASB-category,
here: Physical Impacts of Climate Change
(Information based on provider’s
documentation)

Firm level Climate
Change Exposure,
Measure of Climate
Change Exposure/
Sentiment/ Risk for
physical climate risk,
L2

Exposure Score
Sentiment Score
Risk Score

2016-2019
Average over
yearly values

Earnings Call Transcripts

4-step-procedure:

1. Step: Earnings Call data gathering

2. Step: Pre-construction of bi-grams set
relating to physical climate change
(ML-Algorithm)

3. Step: Count frequency of bigrams in an
earnings call

4. Step: Normalization and eventually
transform data from monthly frequency to
annual frequency (For more details see
Sautner et al. (2020a))

BERT-based climate risk

measure
L3

Physical Risk Score

2019
One value per
year

10-K filings

3-step procedure:

1. Step: Use BERT to derive probability
scores by sentence (item 1A of
10-K-filing) whether it is related to
climate, physical or transition risk

2. Step: Create Binary-Score whether
probability score by sentence is above a
threshold (pre-specified probability
threshold: 0.8)

3. Step: Create Score for each file of the
company by averaging over binary scores
of one document (For more details see
Kolbel et al. (2020))
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Table B.1
Kendall’s = by sector: Horizon 2050, RCP8.5.
N Model Language Across approaches
Score-Pairs M1 M1 M2 L1 L1 L2 M1 M1 M1 M2 M2 M2 M3 M3 M3
M2 M3 M3 L2 L3 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 Avg

Sector
Materials 22 0.14 -0.18 0.33 0.16 0.08 0.45 0.27 0.41 0.27 0.09 0.11 0.23 0.15 0.03 0.17 0.18
Industrials 56 0.17 0.11 0.41 0.09 -0.07 -0.05 0.23 -0.09 0.13 0.07 0.06 0.09 0.11 0.14 0.01 0.09
Financials 52 -0.01 0.10 —-0.34 0.05 0.22 0.19 0.11 0.34 0.09 0.12 0.17 0.02 —-0.10 —-0.10 0.14 0.07
Health Care 50 0.00 —-0.01 0.35 0.20 —-0.06 -0.02 0.08 -0.18 0.10 0.05 —-0.08 0.04 0.06 0.20 0.12 0.06
Communication Services 20 -0.12 —-0.42 0.34 0.12 -0.17 0.27 0.18 0.19 0.26 —-0.20 0.05
Information Technology 56 0.36 0.27 0.45 -0.10 0.09 0.01 -0.03 -0.18 0.00 -0.14 -0.18 0.08 -0.15 —-0.02 0.07 0.04
Utilities 24 0.25 —-0.01 -0.18 0.13 0.03 —-0.04 0.04 0.21 -0.01 0.07 -0.31 0.10 0.03 -0.03 0.21 0.03
Consumer Discretionary 51 —-0.06 -0.13 0.18 0.02 -0.13 0.14 -0.10 0.31 0.41 0.16 -0.07 -0.22 0.12 -0.14 -0.19 0.02
Consumer Staples 26 -0.27 —-0.36 0.34 0.24 —-0.08 —-0.08 0.08 -0.24 0.11 —-0.03 0.21 —-0.05 —-0.05 0.21 0.03 0.00
Energy 24 0.26 -0.16 0.18 0.19 0.05 0.08 —-0.06 0.32 -0.04 -0.31 0.02 —-0.05 —-0.42 0.01 -0.16 -0.01
Real Estate 27 -0.22 -0.30 0.28 -0.11 -0.21 0.18 —0.46 0.22 0.21 0.01 -0.19 —-0.33 0.28 —-0.04 —-0.08 -0.05
Avg 0.05 -0.10 0.21 0.09 0.00 0.08 0.00 0.11 0.14 0.02 —-0.03 0.01 0.03 0.03 0.01 0.04

This table displays Kendall’s = rank correlations at the GICS sector level for each score pair. Scores M1 to M3 denote model-based scores, L1 to L3 denote language-based scores. (p < 0.01 in red,
p<0.05 in blue, p<0.1 in green).
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